Online feature selection for mining big data
Most studies of online learning require accessing all the attributes/ features of training instances. Such a classical setting is not always appropriate for real-world applications when data instances are of high dimensionality or the access to it is expensive to acquire the full set of attributes/f...
Main Authors: | Hoi, Steven C. H., Wang, Jialei., Zhao, Peilin., Jin, Rong. |
---|---|
其他作者: | School of Computer Engineering |
格式: | Conference Paper |
语言: | English |
出版: |
2013
|
主题: | |
在线阅读: | https://hdl.handle.net/10356/98983 http://hdl.handle.net/10220/12629 |
相似书籍
-
Cost-sensitive online classification
由: Hoi, Steven C. H., et al.
出版: (2013) -
LIBOL : a library for online learning algorithms
由: Wang, Jialei, et al.
出版: (2014) -
Second order online collaborative filtering
由: Lu, Jing, et al.
出版: (2014) -
Online multiple kernel classification
由: Jin, Rong., et al.
出版: (2013) -
Mining big spatial data
由: Lee, Ming Da
出版: (2022)