Characterizing the neurite outgrowth inhibitory effect of Mani
Mani (myelin-associated neurite-outgrowth inhibitor) protein is implicated in both axonal guidance and axonal regeneration after central nervous system (CNS) injury. Here, we applied a neurite outgrowth assay, coupled with a siRNA-driven investigation and immunocytochemistry, to unveil Mani’s axonal...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Journal Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99385 http://hdl.handle.net/10220/16250 |
Summary: | Mani (myelin-associated neurite-outgrowth inhibitor) protein is implicated in both axonal guidance and axonal regeneration after central nervous system (CNS) injury. Here, we applied a neurite outgrowth assay, coupled with a siRNA-driven investigation and immunocytochemistry, to unveil Mani’s axonal outgrowth inhibitory effect in embryonic rat cortical primary neurons in vitro. We further demonstrate Mani’s neuronal localization in comparison with a principal subunit, Cdc27, of the anaphase promoting complex (APC). Considering the protein structure of Mani obtained via a series of bio-computational studies, we propose a Cdc27-Mani-APC-related signalling pathway may be involved in CNS axon regeneration. |
---|