Bayesian quantile regression for single-index models
Using an asymmetric Laplace distribution, which provides a mechanism for Bayesian inference of quantile regression models, we develop a fully Bayesian approach to fitting single-index models in conditional quantile regression. In this work, we use a Gaussian process prior for the unknown nonparametr...
Päätekijät: | Hu, Yuao, Lian, Heng, Gramacy, Robert B. |
---|---|
Muut tekijät: | School of Physical and Mathematical Sciences |
Aineistotyyppi: | Journal Article |
Kieli: | English |
Julkaistu: |
2013
|
Linkit: | https://hdl.handle.net/10356/99409 http://hdl.handle.net/10220/17383 |
Samankaltaisia teoksia
-
Bayesian quantile regression for semiparametric models
Tekijä: Hu, Yuao
Julkaistu: (2013) -
Gaussian process single-index models as emulators for computer experiments
Tekijä: Gramacy, Robert B., et al.
Julkaistu: (2013) -
Bayesian quantile regression for streaming data
Tekijä: Zixuan Tian, et al.
Julkaistu: (2024-09-01) -
Bayesian nonparametric quantile regression using splines
Tekijä: Thompson, P, et al.
Julkaistu: (2010) -
Power Prior Elicitation in Bayesian Quantile Regression
Tekijä: Rahim Alhamzawi, et al.
Julkaistu: (2011-01-01)