Discretized-Vapnik-Chervonenkis dimension for analyzing complexity of real function classes

In this paper, we introduce the discretized-Vapnik-Chervonenkis (VC) dimension for studying the complexity of a real function class, and then analyze properties of real function classes and neural networks. We first prove that a countable traversal set is enough to achieve the VC dimension for a rea...

Ամբողջական նկարագրություն

Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Zhang, Chao, Bian, Wei, Tao, Dacheng, Lin, Weisi
Այլ հեղինակներ: School of Computer Engineering
Ձևաչափ: Journal Article
Լեզու:English
Հրապարակվել է: 2013
Խորագրեր:
Առցանց հասանելիություն:https://hdl.handle.net/10356/99545
http://hdl.handle.net/10220/13524