ESTIMASI BAYESIAN PADA MODEL PERSAMAAN STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT

This thesis describes the parameter estimation of structural equation models with ordered categorical variables using Bayesian methods. The basic assumption of SEM-based covarian is interval scale data and meet the assumptions of normality. Ordinal categorical data can be used as normally distribute...

Full description

Bibliographic Details
Main Authors: , RINI YUNITA, , Prof. Drs. H. Subanar. Ph.D
Format: Thesis
Published: [Yogyakarta] : Universitas Gadjah Mada 2013
Subjects:
ETD
_version_ 1826046131044352000
author , RINI YUNITA
, Prof. Drs. H. Subanar. Ph.D
author_facet , RINI YUNITA
, Prof. Drs. H. Subanar. Ph.D
author_sort , RINI YUNITA
collection UGM
description This thesis describes the parameter estimation of structural equation models with ordered categorical variables using Bayesian methods. The basic assumption of SEM-based covarian is interval scale data and meet the assumptions of normality. Ordinal categorical data can be used as normally distributed continuous data by searching for each threshold parameter data. Bayes methods analyze sample data with prior information into account, in order to minimize the error rate. The estimation process performed numerically using a Monte Carlo method, namely Gibbs Sampling and Metropolis Hasting.
first_indexed 2024-03-13T22:48:23Z
format Thesis
id oai:generic.eprints.org:119021
institution Universiti Gadjah Mada
last_indexed 2024-03-13T22:48:23Z
publishDate 2013
publisher [Yogyakarta] : Universitas Gadjah Mada
record_format dspace
spelling oai:generic.eprints.org:1190212016-03-04T08:42:27Z https://repository.ugm.ac.id/119021/ ESTIMASI BAYESIAN PADA MODEL PERSAMAAN STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT , RINI YUNITA , Prof. Drs. H. Subanar. Ph.D ETD This thesis describes the parameter estimation of structural equation models with ordered categorical variables using Bayesian methods. The basic assumption of SEM-based covarian is interval scale data and meet the assumptions of normality. Ordinal categorical data can be used as normally distributed continuous data by searching for each threshold parameter data. Bayes methods analyze sample data with prior information into account, in order to minimize the error rate. The estimation process performed numerically using a Monte Carlo method, namely Gibbs Sampling and Metropolis Hasting. [Yogyakarta] : Universitas Gadjah Mada 2013 Thesis NonPeerReviewed , RINI YUNITA and , Prof. Drs. H. Subanar. Ph.D (2013) ESTIMASI BAYESIAN PADA MODEL PERSAMAAN STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=59011
spellingShingle ETD
, RINI YUNITA
, Prof. Drs. H. Subanar. Ph.D
ESTIMASI BAYESIAN PADA MODEL PERSAMAAN STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT
title ESTIMASI BAYESIAN PADA MODEL PERSAMAAN STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT
title_full ESTIMASI BAYESIAN PADA MODEL PERSAMAAN STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT
title_fullStr ESTIMASI BAYESIAN PADA MODEL PERSAMAAN STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT
title_full_unstemmed ESTIMASI BAYESIAN PADA MODEL PERSAMAAN STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT
title_short ESTIMASI BAYESIAN PADA MODEL PERSAMAAN STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT
title_sort estimasi bayesian pada model persamaan struktural dengan variabel kategorik terurut
topic ETD
work_keys_str_mv AT riniyunita estimasibayesianpadamodelpersamaanstrukturaldenganvariabelkategorikterurut
AT profdrshsubanarphd estimasibayesianpadamodelpersamaanstrukturaldenganvariabelkategorikterurut