ESTIMASI BAYESIAN PADA MODEL PERSAMAAN STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT
This thesis describes the parameter estimation of structural equation models with ordered categorical variables using Bayesian methods. The basic assumption of SEM-based covarian is interval scale data and meet the assumptions of normality. Ordinal categorical data can be used as normally distribute...
Main Authors: | , |
---|---|
Format: | Thesis |
Published: |
[Yogyakarta] : Universitas Gadjah Mada
2013
|
Subjects: |
_version_ | 1826046131044352000 |
---|---|
author | , RINI YUNITA , Prof. Drs. H. Subanar. Ph.D |
author_facet | , RINI YUNITA , Prof. Drs. H. Subanar. Ph.D |
author_sort | , RINI YUNITA |
collection | UGM |
description | This thesis describes the parameter estimation of structural equation models with
ordered categorical variables using Bayesian methods. The basic assumption of
SEM-based covarian is interval scale data and meet the assumptions of normality.
Ordinal categorical data can be used as normally distributed continuous data by
searching for each threshold parameter data. Bayes methods analyze sample data
with prior information into account, in order to minimize the error rate. The
estimation process performed numerically using a Monte Carlo method, namely
Gibbs Sampling and Metropolis Hasting. |
first_indexed | 2024-03-13T22:48:23Z |
format | Thesis |
id | oai:generic.eprints.org:119021 |
institution | Universiti Gadjah Mada |
last_indexed | 2024-03-13T22:48:23Z |
publishDate | 2013 |
publisher | [Yogyakarta] : Universitas Gadjah Mada |
record_format | dspace |
spelling | oai:generic.eprints.org:1190212016-03-04T08:42:27Z https://repository.ugm.ac.id/119021/ ESTIMASI BAYESIAN PADA MODEL PERSAMAAN STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT , RINI YUNITA , Prof. Drs. H. Subanar. Ph.D ETD This thesis describes the parameter estimation of structural equation models with ordered categorical variables using Bayesian methods. The basic assumption of SEM-based covarian is interval scale data and meet the assumptions of normality. Ordinal categorical data can be used as normally distributed continuous data by searching for each threshold parameter data. Bayes methods analyze sample data with prior information into account, in order to minimize the error rate. The estimation process performed numerically using a Monte Carlo method, namely Gibbs Sampling and Metropolis Hasting. [Yogyakarta] : Universitas Gadjah Mada 2013 Thesis NonPeerReviewed , RINI YUNITA and , Prof. Drs. H. Subanar. Ph.D (2013) ESTIMASI BAYESIAN PADA MODEL PERSAMAAN STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=59011 |
spellingShingle | ETD , RINI YUNITA , Prof. Drs. H. Subanar. Ph.D ESTIMASI BAYESIAN PADA MODEL PERSAMAAN STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT |
title | ESTIMASI BAYESIAN PADA MODEL PERSAMAAN
STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT |
title_full | ESTIMASI BAYESIAN PADA MODEL PERSAMAAN
STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT |
title_fullStr | ESTIMASI BAYESIAN PADA MODEL PERSAMAAN
STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT |
title_full_unstemmed | ESTIMASI BAYESIAN PADA MODEL PERSAMAAN
STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT |
title_short | ESTIMASI BAYESIAN PADA MODEL PERSAMAAN
STRUKTURAL DENGAN VARIABEL KATEGORIK TERURUT |
title_sort | estimasi bayesian pada model persamaan struktural dengan variabel kategorik terurut |
topic | ETD |
work_keys_str_mv | AT riniyunita estimasibayesianpadamodelpersamaanstrukturaldenganvariabelkategorikterurut AT profdrshsubanarphd estimasibayesianpadamodelpersamaanstrukturaldenganvariabelkategorikterurut |