PENGATEGORIAN ARTIKEL BERITA KAMPUS BERBAHASA INDONESIA PADA PORTAL BERITA KAMPUS DENGAN MENGGUNAKAN ALGORITMA BISECTING K-MEANS

Campbuzz is campus news portal that obtained the news from universities RSS feed so that the amount of managed articles is very big and there is no category on news articles. It will certainly increase the workload of Campbuzz admin so is needed system that can manage the articles in the Campbuzz da...

Full description

Bibliographic Details
Main Authors: , Putu Bagus Susastra, , Ir. P. Insap Santosa, M.Sc., Ph.D
Format: Thesis
Published: [Yogyakarta] : Universitas Gadjah Mada 2013
Subjects:
ETD
_version_ 1797033833252519936
author , Putu Bagus Susastra
, Ir. P. Insap Santosa, M.Sc., Ph.D
author_facet , Putu Bagus Susastra
, Ir. P. Insap Santosa, M.Sc., Ph.D
author_sort , Putu Bagus Susastra
collection UGM
description Campbuzz is campus news portal that obtained the news from universities RSS feed so that the amount of managed articles is very big and there is no category on news articles. It will certainly increase the workload of Campbuzz admin so is needed system that can manage the articles in the Campbuzz database to ease Campbuzz admin workload. Clustering is unsupervised learning techniques are used to determine the groups (clusters) of a set of large number data. One of algorithm that used for clustering is bisecting K-means, the improvement of K-means algorithm. Text clustering based on content of news articles can be a solution to the problem faced by Campbuzz admin in case arrangements article in Campbuzz database. Development systems that can perform text clustering begins with a literature study relating to the text preprocessing, document representation techniques, clustering techniques, clustering algorithm and tools used for the clustering process. The result of this research is 20 groups news of 210 campus news article samples. The average value of IST from 20 clusters is 0.590013058. Each cluster is represented by 3 words.
first_indexed 2024-03-13T23:01:13Z
format Thesis
id oai:generic.eprints.org:122774
institution Universiti Gadjah Mada
last_indexed 2024-03-13T23:01:13Z
publishDate 2013
publisher [Yogyakarta] : Universitas Gadjah Mada
record_format dspace
spelling oai:generic.eprints.org:1227742016-03-04T08:41:59Z https://repository.ugm.ac.id/122774/ PENGATEGORIAN ARTIKEL BERITA KAMPUS BERBAHASA INDONESIA PADA PORTAL BERITA KAMPUS DENGAN MENGGUNAKAN ALGORITMA BISECTING K-MEANS , Putu Bagus Susastra , Ir. P. Insap Santosa, M.Sc., Ph.D ETD Campbuzz is campus news portal that obtained the news from universities RSS feed so that the amount of managed articles is very big and there is no category on news articles. It will certainly increase the workload of Campbuzz admin so is needed system that can manage the articles in the Campbuzz database to ease Campbuzz admin workload. Clustering is unsupervised learning techniques are used to determine the groups (clusters) of a set of large number data. One of algorithm that used for clustering is bisecting K-means, the improvement of K-means algorithm. Text clustering based on content of news articles can be a solution to the problem faced by Campbuzz admin in case arrangements article in Campbuzz database. Development systems that can perform text clustering begins with a literature study relating to the text preprocessing, document representation techniques, clustering techniques, clustering algorithm and tools used for the clustering process. The result of this research is 20 groups news of 210 campus news article samples. The average value of IST from 20 clusters is 0.590013058. Each cluster is represented by 3 words. [Yogyakarta] : Universitas Gadjah Mada 2013 Thesis NonPeerReviewed , Putu Bagus Susastra and , Ir. P. Insap Santosa, M.Sc., Ph.D (2013) PENGATEGORIAN ARTIKEL BERITA KAMPUS BERBAHASA INDONESIA PADA PORTAL BERITA KAMPUS DENGAN MENGGUNAKAN ALGORITMA BISECTING K-MEANS. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=62880
spellingShingle ETD
, Putu Bagus Susastra
, Ir. P. Insap Santosa, M.Sc., Ph.D
PENGATEGORIAN ARTIKEL BERITA KAMPUS BERBAHASA INDONESIA PADA PORTAL BERITA KAMPUS DENGAN MENGGUNAKAN ALGORITMA BISECTING K-MEANS
title PENGATEGORIAN ARTIKEL BERITA KAMPUS BERBAHASA INDONESIA PADA PORTAL BERITA KAMPUS DENGAN MENGGUNAKAN ALGORITMA BISECTING K-MEANS
title_full PENGATEGORIAN ARTIKEL BERITA KAMPUS BERBAHASA INDONESIA PADA PORTAL BERITA KAMPUS DENGAN MENGGUNAKAN ALGORITMA BISECTING K-MEANS
title_fullStr PENGATEGORIAN ARTIKEL BERITA KAMPUS BERBAHASA INDONESIA PADA PORTAL BERITA KAMPUS DENGAN MENGGUNAKAN ALGORITMA BISECTING K-MEANS
title_full_unstemmed PENGATEGORIAN ARTIKEL BERITA KAMPUS BERBAHASA INDONESIA PADA PORTAL BERITA KAMPUS DENGAN MENGGUNAKAN ALGORITMA BISECTING K-MEANS
title_short PENGATEGORIAN ARTIKEL BERITA KAMPUS BERBAHASA INDONESIA PADA PORTAL BERITA KAMPUS DENGAN MENGGUNAKAN ALGORITMA BISECTING K-MEANS
title_sort pengategorian artikel berita kampus berbahasa indonesia pada portal berita kampus dengan menggunakan algoritma bisecting k means
topic ETD
work_keys_str_mv AT putubagussusastra pengategorianartikelberitakampusberbahasaindonesiapadaportalberitakampusdenganmenggunakanalgoritmabisectingkmeans
AT irpinsapsantosamscphd pengategorianartikelberitakampusberbahasaindonesiapadaportalberitakampusdenganmenggunakanalgoritmabisectingkmeans