ANALISIS BAYESIAN UNTUK REGRESI KUANTIL DENGAN MENGGUNAKAN ALGORITMA GIBBS SAMPLING

Quantile regression has received increasing attention both from a theoretical and from an empirical view point. It is a statistical procedure that minimizing sums of asymmetrically weighted absolute and can be used to explore the relationship between quantile of response distribution. Quantile regre...

Full description

Bibliographic Details
Main Authors: , ANNISA HANIF, , Prof. Dr. Subanar, Ph.D
Format: Thesis
Published: [Yogyakarta] : Universitas Gadjah Mada 2013
Subjects:
ETD
_version_ 1797034010289897472
author , ANNISA HANIF
, Prof. Dr. Subanar, Ph.D
author_facet , ANNISA HANIF
, Prof. Dr. Subanar, Ph.D
author_sort , ANNISA HANIF
collection UGM
description Quantile regression has received increasing attention both from a theoretical and from an empirical view point. It is a statistical procedure that minimizing sums of asymmetrically weighted absolute and can be used to explore the relationship between quantile of response distribution. Quantile regression can be used to overcome the limitation of linear regression to analyze data not symmetric and quantile regression is useful if the distribution of datais not homogeneous. Quantile regression can be estimated using Bayesian method. Bayesian method is a method of analysis based on information from sample and prior information. Combination of those informations is called posterior. For looking posterior dsitribution often result in calculation can not be solved with analytical so Gibbs sampling approach is used. Estimation of parameters in the model is the mean of the posterior distribution that obtained from Gibbs sampling process. In this paper discused quantile regression using an asymmetric Laplace distribution from Bayesian point of view. Gibbs sampling is used to find the estimator of quantile regression model based on a location-scale mixture representation asymmetric Laplace distribution. The case study in this paper discusses the factors that effect the gold price. The estimation result of quantile regression using Bayesian method will be compared with linear regression using OLS method, and compared with quantile regression method. And then it was concluded that the Bayesian method is better than the otherconclusion
first_indexed 2024-03-13T23:04:15Z
format Thesis
id oai:generic.eprints.org:123628
institution Universiti Gadjah Mada
last_indexed 2024-03-13T23:04:15Z
publishDate 2013
publisher [Yogyakarta] : Universitas Gadjah Mada
record_format dspace
spelling oai:generic.eprints.org:1236282016-03-04T08:23:25Z https://repository.ugm.ac.id/123628/ ANALISIS BAYESIAN UNTUK REGRESI KUANTIL DENGAN MENGGUNAKAN ALGORITMA GIBBS SAMPLING , ANNISA HANIF , Prof. Dr. Subanar, Ph.D ETD Quantile regression has received increasing attention both from a theoretical and from an empirical view point. It is a statistical procedure that minimizing sums of asymmetrically weighted absolute and can be used to explore the relationship between quantile of response distribution. Quantile regression can be used to overcome the limitation of linear regression to analyze data not symmetric and quantile regression is useful if the distribution of datais not homogeneous. Quantile regression can be estimated using Bayesian method. Bayesian method is a method of analysis based on information from sample and prior information. Combination of those informations is called posterior. For looking posterior dsitribution often result in calculation can not be solved with analytical so Gibbs sampling approach is used. Estimation of parameters in the model is the mean of the posterior distribution that obtained from Gibbs sampling process. In this paper discused quantile regression using an asymmetric Laplace distribution from Bayesian point of view. Gibbs sampling is used to find the estimator of quantile regression model based on a location-scale mixture representation asymmetric Laplace distribution. The case study in this paper discusses the factors that effect the gold price. The estimation result of quantile regression using Bayesian method will be compared with linear regression using OLS method, and compared with quantile regression method. And then it was concluded that the Bayesian method is better than the otherconclusion [Yogyakarta] : Universitas Gadjah Mada 2013 Thesis NonPeerReviewed , ANNISA HANIF and , Prof. Dr. Subanar, Ph.D (2013) ANALISIS BAYESIAN UNTUK REGRESI KUANTIL DENGAN MENGGUNAKAN ALGORITMA GIBBS SAMPLING. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=63742
spellingShingle ETD
, ANNISA HANIF
, Prof. Dr. Subanar, Ph.D
ANALISIS BAYESIAN UNTUK REGRESI KUANTIL DENGAN MENGGUNAKAN ALGORITMA GIBBS SAMPLING
title ANALISIS BAYESIAN UNTUK REGRESI KUANTIL DENGAN MENGGUNAKAN ALGORITMA GIBBS SAMPLING
title_full ANALISIS BAYESIAN UNTUK REGRESI KUANTIL DENGAN MENGGUNAKAN ALGORITMA GIBBS SAMPLING
title_fullStr ANALISIS BAYESIAN UNTUK REGRESI KUANTIL DENGAN MENGGUNAKAN ALGORITMA GIBBS SAMPLING
title_full_unstemmed ANALISIS BAYESIAN UNTUK REGRESI KUANTIL DENGAN MENGGUNAKAN ALGORITMA GIBBS SAMPLING
title_short ANALISIS BAYESIAN UNTUK REGRESI KUANTIL DENGAN MENGGUNAKAN ALGORITMA GIBBS SAMPLING
title_sort analisis bayesian untuk regresi kuantil dengan menggunakan algoritma gibbs sampling
topic ETD
work_keys_str_mv AT annisahanif analisisbayesianuntukregresikuantildenganmenggunakanalgoritmagibbssampling
AT profdrsubanarphd analisisbayesianuntukregresikuantildenganmenggunakanalgoritmagibbssampling