PENERAPAN ALGORITMA INVASIVE WEED OPTIMIZATION UNTUK PENENTUAN TITIK PUSAT KLASTER PADA K-MEANS

K-means is one of the most popular clustering algorithm. One reason for the popularity of K-means is it is easy and simple when implemented. However, the results of K-means is very sensitive to the selection of initial centroid. The results are often better after several experi...

Full description

Bibliographic Details
Main Authors: , I PUTU ADI PRATAMA, , Drs. Agus Harjoko, M. Sc., Ph. D.
Format: Thesis
Published: [Yogyakarta] : Universitas Gadjah Mada 2014
Subjects:
ETD
_version_ 1797035419730182144
author , I PUTU ADI PRATAMA
, Drs. Agus Harjoko, M. Sc., Ph. D.
author_facet , I PUTU ADI PRATAMA
, Drs. Agus Harjoko, M. Sc., Ph. D.
author_sort , I PUTU ADI PRATAMA
collection UGM
description K-means is one of the most popular clustering algorithm. One reason for the popularity of K-means is it is easy and simple when implemented. However, the results of K-means is very sensitive to the selection of initial centroid. The results are often better after several experiment. Another reason why K-means stuck in local optima is due to the method of determining the new center point for each iteration that is performed using the mean value of the data that exist on the cluster. This causes the algorithm will do search for the centroid candidates around the center point. To overcome this, implement a method that is able to do a global search to determine the center point on K-means may be able to assist Kmeans in finding better cluster center. Invasive Weed Optimization (IWO) is a global search algorithm inspired by weed colonization process. In this study proposed a method which is the result of hybridization of K-means and IWO (IWOKM). Performance of the method has been tested on flower Iris dataset. The results are then compared with the result from K-means. The result show that IWOKM able to produce better cluster center than K-means.
first_indexed 2024-03-13T23:29:56Z
format Thesis
id oai:generic.eprints.org:130631
institution Universiti Gadjah Mada
last_indexed 2024-03-13T23:29:56Z
publishDate 2014
publisher [Yogyakarta] : Universitas Gadjah Mada
record_format dspace
spelling oai:generic.eprints.org:1306312016-03-04T07:57:09Z https://repository.ugm.ac.id/130631/ PENERAPAN ALGORITMA INVASIVE WEED OPTIMIZATION UNTUK PENENTUAN TITIK PUSAT KLASTER PADA K-MEANS , I PUTU ADI PRATAMA , Drs. Agus Harjoko, M. Sc., Ph. D. ETD K-means is one of the most popular clustering algorithm. One reason for the popularity of K-means is it is easy and simple when implemented. However, the results of K-means is very sensitive to the selection of initial centroid. The results are often better after several experiment. Another reason why K-means stuck in local optima is due to the method of determining the new center point for each iteration that is performed using the mean value of the data that exist on the cluster. This causes the algorithm will do search for the centroid candidates around the center point. To overcome this, implement a method that is able to do a global search to determine the center point on K-means may be able to assist Kmeans in finding better cluster center. Invasive Weed Optimization (IWO) is a global search algorithm inspired by weed colonization process. In this study proposed a method which is the result of hybridization of K-means and IWO (IWOKM). Performance of the method has been tested on flower Iris dataset. The results are then compared with the result from K-means. The result show that IWOKM able to produce better cluster center than K-means. [Yogyakarta] : Universitas Gadjah Mada 2014 Thesis NonPeerReviewed , I PUTU ADI PRATAMA and , Drs. Agus Harjoko, M. Sc., Ph. D. (2014) PENERAPAN ALGORITMA INVASIVE WEED OPTIMIZATION UNTUK PENENTUAN TITIK PUSAT KLASTER PADA K-MEANS. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=71057
spellingShingle ETD
, I PUTU ADI PRATAMA
, Drs. Agus Harjoko, M. Sc., Ph. D.
PENERAPAN ALGORITMA INVASIVE WEED OPTIMIZATION UNTUK PENENTUAN TITIK PUSAT KLASTER PADA K-MEANS
title PENERAPAN ALGORITMA INVASIVE WEED OPTIMIZATION UNTUK PENENTUAN TITIK PUSAT KLASTER PADA K-MEANS
title_full PENERAPAN ALGORITMA INVASIVE WEED OPTIMIZATION UNTUK PENENTUAN TITIK PUSAT KLASTER PADA K-MEANS
title_fullStr PENERAPAN ALGORITMA INVASIVE WEED OPTIMIZATION UNTUK PENENTUAN TITIK PUSAT KLASTER PADA K-MEANS
title_full_unstemmed PENERAPAN ALGORITMA INVASIVE WEED OPTIMIZATION UNTUK PENENTUAN TITIK PUSAT KLASTER PADA K-MEANS
title_short PENERAPAN ALGORITMA INVASIVE WEED OPTIMIZATION UNTUK PENENTUAN TITIK PUSAT KLASTER PADA K-MEANS
title_sort penerapan algoritma invasive weed optimization untuk penentuan titik pusat klaster pada k means
topic ETD
work_keys_str_mv AT iputuadipratama penerapanalgoritmainvasiveweedoptimizationuntukpenentuantitikpusatklasterpadakmeans
AT drsagusharjokomscphd penerapanalgoritmainvasiveweedoptimizationuntukpenentuantitikpusatklasterpadakmeans