KLASIFIKASI KANKER USUS BESAR BERBASIS PENGOLAHAN CITRA DIGITAL DENGAN METODE RADIAL BASIS FUNCTION (RBF)

Colon is an important organ in the human body. Many disorders that can affect these organs, and the worst is cancer. There are several types of cancer including colorectal is carcinoma and limphoma, two types of cancer is a malignant cancer. So if the cancer not quickly detected and classified, it w...

Cur síos iomlán

Sonraí bibleagrafaíochta
Príomhchruthaitheoirí: , NIKITE SULISTIYANA, , Drs. Agus Harjoko, M.Sc.,Ph.D
Formáid: Tráchtas
Foilsithe / Cruthaithe: [Yogyakarta] : Universitas Gadjah Mada 2014
Ábhair:
ETD
_version_ 1826048974231961600
author , NIKITE SULISTIYANA
, Drs. Agus Harjoko, M.Sc.,Ph.D
author_facet , NIKITE SULISTIYANA
, Drs. Agus Harjoko, M.Sc.,Ph.D
author_sort , NIKITE SULISTIYANA
collection UGM
description Colon is an important organ in the human body. Many disorders that can affect these organs, and the worst is cancer. There are several types of cancer including colorectal is carcinoma and limphoma, two types of cancer is a malignant cancer. So if the cancer not quickly detected and classified, it will cause death. Currently colon cancer classification identified by manual. So diagnosing highly correlated with the quality of vision of each doctor. Human error will greatly affect the outcome of diagnosing. Therefore in this research creates a system to classify colon cancer based on image processing and the data take from a digital image of tissue colorectal cancer. To classify colorectal cancer used Artificial Neural Network Radial Basis Function. Used 300 sample images to extracted the features using gray level cooccurence matrix (GLCM). The features is the energy, contrast, correlation, and homogeneity. This features are trained using the Radial Basis Function neural network in order to classify the image into 3 class is carcinoma, lymphoma, and normal. From the testing is obtained accuracy rate is 91.11% of 90 test images with the RBF neural network parameters: the epoch 5000, learning rate is 0.01 and hidden layer neurons or the centers is 175.
first_indexed 2024-03-13T23:38:31Z
format Thesis
id oai:generic.eprints.org:133188
institution Universiti Gadjah Mada
last_indexed 2024-03-13T23:38:31Z
publishDate 2014
publisher [Yogyakarta] : Universitas Gadjah Mada
record_format dspace
spelling oai:generic.eprints.org:1331882016-03-04T08:03:25Z https://repository.ugm.ac.id/133188/ KLASIFIKASI KANKER USUS BESAR BERBASIS PENGOLAHAN CITRA DIGITAL DENGAN METODE RADIAL BASIS FUNCTION (RBF) , NIKITE SULISTIYANA , Drs. Agus Harjoko, M.Sc.,Ph.D ETD Colon is an important organ in the human body. Many disorders that can affect these organs, and the worst is cancer. There are several types of cancer including colorectal is carcinoma and limphoma, two types of cancer is a malignant cancer. So if the cancer not quickly detected and classified, it will cause death. Currently colon cancer classification identified by manual. So diagnosing highly correlated with the quality of vision of each doctor. Human error will greatly affect the outcome of diagnosing. Therefore in this research creates a system to classify colon cancer based on image processing and the data take from a digital image of tissue colorectal cancer. To classify colorectal cancer used Artificial Neural Network Radial Basis Function. Used 300 sample images to extracted the features using gray level cooccurence matrix (GLCM). The features is the energy, contrast, correlation, and homogeneity. This features are trained using the Radial Basis Function neural network in order to classify the image into 3 class is carcinoma, lymphoma, and normal. From the testing is obtained accuracy rate is 91.11% of 90 test images with the RBF neural network parameters: the epoch 5000, learning rate is 0.01 and hidden layer neurons or the centers is 175. [Yogyakarta] : Universitas Gadjah Mada 2014 Thesis NonPeerReviewed , NIKITE SULISTIYANA and , Drs. Agus Harjoko, M.Sc.,Ph.D (2014) KLASIFIKASI KANKER USUS BESAR BERBASIS PENGOLAHAN CITRA DIGITAL DENGAN METODE RADIAL BASIS FUNCTION (RBF). UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=73748
spellingShingle ETD
, NIKITE SULISTIYANA
, Drs. Agus Harjoko, M.Sc.,Ph.D
KLASIFIKASI KANKER USUS BESAR BERBASIS PENGOLAHAN CITRA DIGITAL DENGAN METODE RADIAL BASIS FUNCTION (RBF)
title KLASIFIKASI KANKER USUS BESAR BERBASIS PENGOLAHAN CITRA DIGITAL DENGAN METODE RADIAL BASIS FUNCTION (RBF)
title_full KLASIFIKASI KANKER USUS BESAR BERBASIS PENGOLAHAN CITRA DIGITAL DENGAN METODE RADIAL BASIS FUNCTION (RBF)
title_fullStr KLASIFIKASI KANKER USUS BESAR BERBASIS PENGOLAHAN CITRA DIGITAL DENGAN METODE RADIAL BASIS FUNCTION (RBF)
title_full_unstemmed KLASIFIKASI KANKER USUS BESAR BERBASIS PENGOLAHAN CITRA DIGITAL DENGAN METODE RADIAL BASIS FUNCTION (RBF)
title_short KLASIFIKASI KANKER USUS BESAR BERBASIS PENGOLAHAN CITRA DIGITAL DENGAN METODE RADIAL BASIS FUNCTION (RBF)
title_sort klasifikasi kanker usus besar berbasis pengolahan citra digital dengan metode radial basis function rbf
topic ETD
work_keys_str_mv AT nikitesulistiyana klasifikasikankerususbesarberbasispengolahancitradigitaldenganmetoderadialbasisfunctionrbf
AT drsagusharjokomscphd klasifikasikankerususbesarberbasispengolahancitradigitaldenganmetoderadialbasisfunctionrbf