PREDIKSI PENURUNAN KAPASITAS STRUKTUR ATAS JEMBATAN RANGKA BAJA DENGAN METODE ARTIFICIAL NEURAL NETWORK

Indonesia use Bridge Management System (BMS) methodfor bridge monitoring and inspection system. This method still need development in accuracy and objectivity. In this paper, a stell truss bridge upper structure capacity prediction method using Artificial Neural Network (ANN) has been...

Full description

Bibliographic Details
Main Authors: , ANGGA TRISNA Y, , Akhmad Aminullah, S.T., M.T., Ph.D.
Format: Thesis
Published: [Yogyakarta] : Universitas Gadjah Mada 2014
Subjects:
ETD
_version_ 1826049060639866880
author , ANGGA TRISNA Y
, Akhmad Aminullah, S.T., M.T., Ph.D.
author_facet , ANGGA TRISNA Y
, Akhmad Aminullah, S.T., M.T., Ph.D.
author_sort , ANGGA TRISNA Y
collection UGM
description Indonesia use Bridge Management System (BMS) methodfor bridge monitoring and inspection system. This method still need development in accuracy and objectivity. In this paper, a stell truss bridge upper structure capacity prediction method using Artificial Neural Network (ANN) has been proposed. Furthermpre, this method may be advanced development of BMS method ANN is a matematics modelling method for derivate an empirical equation to solve an unique process from several unique input and output. Empirical equation derivated from ANN has an high accuracy and proven by previous study. In this case, empirical equation has derivated from input which describe bridge capacity reduction factor and output which describe rating factor. Bridge capacity reduction factor that has been proposed were age of bridge, actual maximum load, actual yield stress, and element compactness. Study has implemented in three bridge as case study, there were Lubuk Jambi Bridge, Kampar Kanan Bridge, and Batang Nilau Bridge in Riau Province. The study result indicated that empirical equation derivated from ANN for Lubuk Jambi Bridge, Kampar Kanan Bridge, and Batang NilauBridge given good data consistency and maximum error smaller than 10%, so the empirical equation has been valid and accurate. Furthermore the empirical equation can be used to predict capacity reduction for each bridge.
first_indexed 2024-03-13T23:39:52Z
format Thesis
id oai:generic.eprints.org:133625
institution Universiti Gadjah Mada
last_indexed 2024-03-13T23:39:52Z
publishDate 2014
publisher [Yogyakarta] : Universitas Gadjah Mada
record_format dspace
spelling oai:generic.eprints.org:1336252016-03-04T07:52:14Z https://repository.ugm.ac.id/133625/ PREDIKSI PENURUNAN KAPASITAS STRUKTUR ATAS JEMBATAN RANGKA BAJA DENGAN METODE ARTIFICIAL NEURAL NETWORK , ANGGA TRISNA Y , Akhmad Aminullah, S.T., M.T., Ph.D. ETD Indonesia use Bridge Management System (BMS) methodfor bridge monitoring and inspection system. This method still need development in accuracy and objectivity. In this paper, a stell truss bridge upper structure capacity prediction method using Artificial Neural Network (ANN) has been proposed. Furthermpre, this method may be advanced development of BMS method ANN is a matematics modelling method for derivate an empirical equation to solve an unique process from several unique input and output. Empirical equation derivated from ANN has an high accuracy and proven by previous study. In this case, empirical equation has derivated from input which describe bridge capacity reduction factor and output which describe rating factor. Bridge capacity reduction factor that has been proposed were age of bridge, actual maximum load, actual yield stress, and element compactness. Study has implemented in three bridge as case study, there were Lubuk Jambi Bridge, Kampar Kanan Bridge, and Batang Nilau Bridge in Riau Province. The study result indicated that empirical equation derivated from ANN for Lubuk Jambi Bridge, Kampar Kanan Bridge, and Batang NilauBridge given good data consistency and maximum error smaller than 10%, so the empirical equation has been valid and accurate. Furthermore the empirical equation can be used to predict capacity reduction for each bridge. [Yogyakarta] : Universitas Gadjah Mada 2014 Thesis NonPeerReviewed , ANGGA TRISNA Y and , Akhmad Aminullah, S.T., M.T., Ph.D. (2014) PREDIKSI PENURUNAN KAPASITAS STRUKTUR ATAS JEMBATAN RANGKA BAJA DENGAN METODE ARTIFICIAL NEURAL NETWORK. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=74346
spellingShingle ETD
, ANGGA TRISNA Y
, Akhmad Aminullah, S.T., M.T., Ph.D.
PREDIKSI PENURUNAN KAPASITAS STRUKTUR ATAS JEMBATAN RANGKA BAJA DENGAN METODE ARTIFICIAL NEURAL NETWORK
title PREDIKSI PENURUNAN KAPASITAS STRUKTUR ATAS JEMBATAN RANGKA BAJA DENGAN METODE ARTIFICIAL NEURAL NETWORK
title_full PREDIKSI PENURUNAN KAPASITAS STRUKTUR ATAS JEMBATAN RANGKA BAJA DENGAN METODE ARTIFICIAL NEURAL NETWORK
title_fullStr PREDIKSI PENURUNAN KAPASITAS STRUKTUR ATAS JEMBATAN RANGKA BAJA DENGAN METODE ARTIFICIAL NEURAL NETWORK
title_full_unstemmed PREDIKSI PENURUNAN KAPASITAS STRUKTUR ATAS JEMBATAN RANGKA BAJA DENGAN METODE ARTIFICIAL NEURAL NETWORK
title_short PREDIKSI PENURUNAN KAPASITAS STRUKTUR ATAS JEMBATAN RANGKA BAJA DENGAN METODE ARTIFICIAL NEURAL NETWORK
title_sort prediksi penurunan kapasitas struktur atas jembatan rangka baja dengan metode artificial neural network
topic ETD
work_keys_str_mv AT anggatrisnay prediksipenurunankapasitasstrukturatasjembatanrangkabajadenganmetodeartificialneuralnetwork
AT akhmadaminullahstmtphd prediksipenurunankapasitasstrukturatasjembatanrangkabajadenganmetodeartificialneuralnetwork