HYBRID RECOMMENDATION SYSTEM MEMANFAATKAN PENGGALIAN FREQUENT ITEMSET DAN PERBANDINGAN KEYWORD

Recommendation system was commonly built by manipulating item ranking data and user identity data. Item ranking data was a rare data on newly constructed system. Whereas, giving identity data to the recommendation system can cause concern about identity data misuse. Hybrid recommendation system used...

Full description

Bibliographic Details
Main Author: PARWITA, WAYAN GEDE SUKA
Format: Thesis
Published: [Yogyakarta] : Universitas Gadjah Mada 2015
Subjects:
_version_ 1826049237579726848
author PARWITA, WAYAN GEDE SUKA
author_facet PARWITA, WAYAN GEDE SUKA
author_sort PARWITA, WAYAN GEDE SUKA
collection UGM
description Recommendation system was commonly built by manipulating item ranking data and user identity data. Item ranking data was a rare data on newly constructed system. Whereas, giving identity data to the recommendation system can cause concern about identity data misuse. Hybrid recommendation system used frequent itemset mining algorithm and keyword comparison, it can provide recommendations without identity data and item ranking data. Frequent itemset mining was done using FP-Gwowth algorithm and keyword comparison with calculating document similarity value using cosine similarity approach. Hybrid recommendation system with a combination of frequent itemset mining and keywords comparison can give recommendations without using user identity and rating data. Hybrid recommendation system used 3 thresholds ie minimum similarity, minimum support, and number of recommendations. With the testing data used, precision, recall, F-measure, and MAP testing value are influenced by the threshold value. In addition, the usual problem in the best threshold can achieve a higher testing value than the coldstart problem both for the limited number of recommendations and the maximum recommendations.
first_indexed 2024-03-13T23:42:45Z
format Thesis
id oai:generic.eprints.org:134519
institution Universiti Gadjah Mada
last_indexed 2024-03-13T23:42:45Z
publishDate 2015
publisher [Yogyakarta] : Universitas Gadjah Mada
record_format dspace
spelling oai:generic.eprints.org:1345192016-04-15T06:11:29Z https://repository.ugm.ac.id/134519/ HYBRID RECOMMENDATION SYSTEM MEMANFAATKAN PENGGALIAN FREQUENT ITEMSET DAN PERBANDINGAN KEYWORD PARWITA, WAYAN GEDE SUKA Information and Computing Sciences Information System Recommendation system was commonly built by manipulating item ranking data and user identity data. Item ranking data was a rare data on newly constructed system. Whereas, giving identity data to the recommendation system can cause concern about identity data misuse. Hybrid recommendation system used frequent itemset mining algorithm and keyword comparison, it can provide recommendations without identity data and item ranking data. Frequent itemset mining was done using FP-Gwowth algorithm and keyword comparison with calculating document similarity value using cosine similarity approach. Hybrid recommendation system with a combination of frequent itemset mining and keywords comparison can give recommendations without using user identity and rating data. Hybrid recommendation system used 3 thresholds ie minimum similarity, minimum support, and number of recommendations. With the testing data used, precision, recall, F-measure, and MAP testing value are influenced by the threshold value. In addition, the usual problem in the best threshold can achieve a higher testing value than the coldstart problem both for the limited number of recommendations and the maximum recommendations. [Yogyakarta] : Universitas Gadjah Mada 2015 Thesis NonPeerReviewed PARWITA, WAYAN GEDE SUKA (2015) HYBRID RECOMMENDATION SYSTEM MEMANFAATKAN PENGGALIAN FREQUENT ITEMSET DAN PERBANDINGAN KEYWORD. Masters thesis, UGM. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=77200
spellingShingle Information and Computing Sciences
Information System
PARWITA, WAYAN GEDE SUKA
HYBRID RECOMMENDATION SYSTEM MEMANFAATKAN PENGGALIAN FREQUENT ITEMSET DAN PERBANDINGAN KEYWORD
title HYBRID RECOMMENDATION SYSTEM MEMANFAATKAN PENGGALIAN FREQUENT ITEMSET DAN PERBANDINGAN KEYWORD
title_full HYBRID RECOMMENDATION SYSTEM MEMANFAATKAN PENGGALIAN FREQUENT ITEMSET DAN PERBANDINGAN KEYWORD
title_fullStr HYBRID RECOMMENDATION SYSTEM MEMANFAATKAN PENGGALIAN FREQUENT ITEMSET DAN PERBANDINGAN KEYWORD
title_full_unstemmed HYBRID RECOMMENDATION SYSTEM MEMANFAATKAN PENGGALIAN FREQUENT ITEMSET DAN PERBANDINGAN KEYWORD
title_short HYBRID RECOMMENDATION SYSTEM MEMANFAATKAN PENGGALIAN FREQUENT ITEMSET DAN PERBANDINGAN KEYWORD
title_sort hybrid recommendation system memanfaatkan penggalian frequent itemset dan perbandingan keyword
topic Information and Computing Sciences
Information System
work_keys_str_mv AT parwitawayangedesuka hybridrecommendationsystemmemanfaatkanpenggalianfrequentitemsetdanperbandingankeyword