Tapis kalman ruang waktu=Space time Kalman filter

Many physical or biological processes involve variability over both space and time. A large datas,et and the modelling of space, time, and spatio-temporal interaction cause traditional space time methods are limited. This paper presents an approach to space time prediction that achieves dimension re...

Full description

Bibliographic Details
Main Author: Perpustakaan UGM, i-lib
Format: Article
Published: [Yogyakarta] : Universitas Gadjah Mada 2005
Subjects:
_version_ 1826031201004027904
author Perpustakaan UGM, i-lib
author_facet Perpustakaan UGM, i-lib
author_sort Perpustakaan UGM, i-lib
collection UGM
description Many physical or biological processes involve variability over both space and time. A large datas,et and the modelling of space, time, and spatio-temporal interaction cause traditional space time methods are limited. This paper presents an approach to space time prediction that achieves dimension reduction and uses a statistical model that is temporally dynamic and spatially descriptive, called space time Kalman filter. The model also allows a non dinamic spatial component. Key Words : prediction, filter, optimal prediction, Bayesian inference, orthonormal basis.
first_indexed 2024-03-13T18:34:43Z
format Article
id oai:generic.eprints.org:18021
institution Universiti Gadjah Mada
last_indexed 2024-03-13T18:34:43Z
publishDate 2005
publisher [Yogyakarta] : Universitas Gadjah Mada
record_format dspace
spelling oai:generic.eprints.org:180212014-06-18T00:27:35Z https://repository.ugm.ac.id/18021/ Tapis kalman ruang waktu=Space time Kalman filter Perpustakaan UGM, i-lib Jurnal i-lib UGM Many physical or biological processes involve variability over both space and time. A large datas,et and the modelling of space, time, and spatio-temporal interaction cause traditional space time methods are limited. This paper presents an approach to space time prediction that achieves dimension reduction and uses a statistical model that is temporally dynamic and spatially descriptive, called space time Kalman filter. The model also allows a non dinamic spatial component. Key Words : prediction, filter, optimal prediction, Bayesian inference, orthonormal basis. [Yogyakarta] : Universitas Gadjah Mada 2005 Article NonPeerReviewed Perpustakaan UGM, i-lib (2005) Tapis kalman ruang waktu=Space time Kalman filter. Jurnal i-lib UGM. http://i-lib.ugm.ac.id/jurnal/download.php?dataId=796
spellingShingle Jurnal i-lib UGM
Perpustakaan UGM, i-lib
Tapis kalman ruang waktu=Space time Kalman filter
title Tapis kalman ruang waktu=Space time Kalman filter
title_full Tapis kalman ruang waktu=Space time Kalman filter
title_fullStr Tapis kalman ruang waktu=Space time Kalman filter
title_full_unstemmed Tapis kalman ruang waktu=Space time Kalman filter
title_short Tapis kalman ruang waktu=Space time Kalman filter
title_sort tapis kalman ruang waktu space time kalman filter
topic Jurnal i-lib UGM
work_keys_str_mv AT perpustakaanugmilib tapiskalmanruangwaktuspacetimekalmanfilter