Aplikasi Analisis Komponen Utama Dalam Deteksi Gross Error Pada Pengukuran Multivariable

Principle Component Analysis (PCA) is a tool of many multivariate statistical analysis based on a linear transformation from a set of correlated variables to a new set of uncorrelated variables. This transformation will lead to data reduction and interpretation via extraction of variance-covariance...

Full description

Bibliographic Details
Main Author: Perpustakaan UGM, i-lib
Format: Article
Published: [Yogyakarta] : Program Pascasarjana Universitas Gadjah Mada 2000
Subjects:
_version_ 1797018319189966848
author Perpustakaan UGM, i-lib
author_facet Perpustakaan UGM, i-lib
author_sort Perpustakaan UGM, i-lib
collection UGM
description Principle Component Analysis (PCA) is a tool of many multivariate statistical analysis based on a linear transformation from a set of correlated variables to a new set of uncorrelated variables. This transformation will lead to data reduction and interpretation via extraction of variance-covariance structure of p original variables into just k principle component. This k principle components, generally only small number of k, can explain as much information as there is in the p original variables. Automatic measurements made on the modern computer controlled chemical plant often result many inter-correlated variables. So, the need of a tool to analyze these variables (e.g. for error detecting) is real. The aim of this research is to promote Principle Component Analysis as a tool to detect gross error occurred in the chemical process network. The computer simulation of measurements made on the chemical process network is made to test the capability of PCA in detecting and identifying gross error. This paper shows that PCA is capable of detecting gross errors of small magnitudes and has substantial power to correctly identify the variables in error when the other methods (univariate methods) fail.
first_indexed 2024-03-13T18:42:06Z
format Article
id oai:generic.eprints.org:20796
institution Universiti Gadjah Mada
last_indexed 2024-03-13T18:42:06Z
publishDate 2000
publisher [Yogyakarta] : Program Pascasarjana Universitas Gadjah Mada
record_format dspace
spelling oai:generic.eprints.org:207962014-06-18T00:33:36Z https://repository.ugm.ac.id/20796/ Aplikasi Analisis Komponen Utama Dalam Deteksi Gross Error Pada Pengukuran Multivariable Perpustakaan UGM, i-lib Jurnal i-lib UGM Principle Component Analysis (PCA) is a tool of many multivariate statistical analysis based on a linear transformation from a set of correlated variables to a new set of uncorrelated variables. This transformation will lead to data reduction and interpretation via extraction of variance-covariance structure of p original variables into just k principle component. This k principle components, generally only small number of k, can explain as much information as there is in the p original variables. Automatic measurements made on the modern computer controlled chemical plant often result many inter-correlated variables. So, the need of a tool to analyze these variables (e.g. for error detecting) is real. The aim of this research is to promote Principle Component Analysis as a tool to detect gross error occurred in the chemical process network. The computer simulation of measurements made on the chemical process network is made to test the capability of PCA in detecting and identifying gross error. This paper shows that PCA is capable of detecting gross errors of small magnitudes and has substantial power to correctly identify the variables in error when the other methods (univariate methods) fail. [Yogyakarta] : Program Pascasarjana Universitas Gadjah Mada 2000 Article NonPeerReviewed Perpustakaan UGM, i-lib (2000) Aplikasi Analisis Komponen Utama Dalam Deteksi Gross Error Pada Pengukuran Multivariable. Jurnal i-lib UGM. http://i-lib.ugm.ac.id/jurnal/download.php?dataId=3653
spellingShingle Jurnal i-lib UGM
Perpustakaan UGM, i-lib
Aplikasi Analisis Komponen Utama Dalam Deteksi Gross Error Pada Pengukuran Multivariable
title Aplikasi Analisis Komponen Utama Dalam Deteksi Gross Error Pada Pengukuran Multivariable
title_full Aplikasi Analisis Komponen Utama Dalam Deteksi Gross Error Pada Pengukuran Multivariable
title_fullStr Aplikasi Analisis Komponen Utama Dalam Deteksi Gross Error Pada Pengukuran Multivariable
title_full_unstemmed Aplikasi Analisis Komponen Utama Dalam Deteksi Gross Error Pada Pengukuran Multivariable
title_short Aplikasi Analisis Komponen Utama Dalam Deteksi Gross Error Pada Pengukuran Multivariable
title_sort aplikasi analisis komponen utama dalam deteksi gross error pada pengukuran multivariable
topic Jurnal i-lib UGM
work_keys_str_mv AT perpustakaanugmilib aplikasianalisiskomponenutamadalamdeteksigrosserrorpadapengukuranmultivariable