MUCPSO: A Modified Chaotic Particle Swarm Optimization with Uniform Initialization for Optimizing Software Effort Estimation
Particle Swarm Optimization is a metaheuristic optimization algorithm widely used across a broad range of applications. The algorithm has certain primary advantages such as its ease of implementation, high convergence accuracy, and fast convergence speed. Nevertheless, since its origin in 1995, Part...
Main Authors: | Ardiansyah, Ardiansyah, Ferdiana, Ridi, Permanasari, Adhistya Erna |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI
2022
|
Subjects: | |
Online Access: | https://repository.ugm.ac.id/282119/1/Ardiansyah%20et%20al.%20-%202022%20-%20MUCPSO%20A%20modified%20chaotic%20particle%20swarm%20optimiza.pdf |
Similar Items
-
MUCPSO: A Modified Chaotic Particle Swarm Optimization with Uniform Initialization for Optimizing Software Effort Estimation
by: Ardiansyah Ardiansyah, et al.
Published: (2022-01-01) -
Optimizing complexity weight parameter of use case points estimation using particle swarm optimization
by: Ardiansyah, Ardiansyah, et al.
Published: (2022) -
Optimizing SVM Hyperparameters using Predatory Swarms Algorithms for Use Case Points Estimation
by: Ardiansyah, Ardiansyah, et al.
Published: (2022) -
Optimizing complexity weight parameter of use case points estimation using particle swarm optimization
by: Ardiansyah Ardiansyah, et al.
Published: (2022-07-01) -
Complexity Weights Parameter Optimization of Use Case Points Estimation using Chaotic PSO
by: Ardiansyah, Ardiansyah, et al.
Published: (2022)