Primary source of placer gold in the Luk Ulo Metamorphic Complex, Central Java, Indonesia

The Luk Ulo Metamorphic Complex, Central Java is a product of the Cretaceous subduction and accretion, and includes diverse types of protoliths. Two-types of primary mineralization have been recognized in this area, namely, (1) seafloor basalt-hosted massive sulfide mineralization and (2) low-grade...

Full description

Bibliographic Details
Main Authors: Suhendra, Renaldi, Takahashi, Ryohei, Imai, Akira, Sato, Hinako, Setiawan, Nugroho Imam, Agangi, Andrea
Format: Article
Language:English
Published: Wiley-Blackwell 2022
Subjects:
Online Access:https://repository.ugm.ac.id/282125/1/Setiawan%20et%20al%20-%202022%20-%20Primary%20source%20of%20placer%20gold%20in%20the%20Luk%20Ulo%20Metamorphic.pdf
_version_ 1797037538932686848
author Suhendra, Renaldi
Takahashi, Ryohei
Imai, Akira
Sato, Hinako
Setiawan, Nugroho Imam
Agangi, Andrea
author_facet Suhendra, Renaldi
Takahashi, Ryohei
Imai, Akira
Sato, Hinako
Setiawan, Nugroho Imam
Agangi, Andrea
author_sort Suhendra, Renaldi
collection UGM
description The Luk Ulo Metamorphic Complex, Central Java is a product of the Cretaceous subduction and accretion, and includes diverse types of protoliths. Two-types of primary mineralization have been recognized in this area, namely, (1) seafloor basalt-hosted massive sulfide mineralization and (2) low-grade metamorphic rocks-hosted vein type mineralization. Later erosion of these types of primary mineralization formed placer gold deposits along rivers. However, the source has never been identified. Thus, this study aims at understanding the source of placer gold, the characteristics of the primary mineralization, and the tectonic evolution of the study area on the basis of mineralogy, mineral chemistry, whole-rock geochemistry, and sulfur isotope analyses. Volcanogenic massive sulfide (VMS)-type mineralization was identified in the seafloor basalt and few deep-sea sedimentary rocks, and both the ores and host rocks preserved pre-metamorphic textures and minerals. The characteristics of this VMS-type mineralization include (1) crustiform quartz veins with pyrite cutting the host rocks, (2) zonation of local silicification to interlayered chlorite/smectite-chlorite-laumontite-calcite-epidote alteration from central to outer zone, (3) pyrite-dominated ores with minor amounts of arsenian pyrite, chalcopyrite, and marcasite, (4) unmetamorphosed host rocks and ores, and (5) sulfur isotope signature with a median δ34S of +3.1‰ suggesting sulfur derived from magmatic source and/or sulfur extracted from basaltic rocks with a small contribution of biogenic sulfur. On the other hand, low-grade metamorphic rocks-hosted vein type mineralization was identified as orogenic-type gold mineralization, and the mineralized veins formed after the peak of metamorphism. It is characterized by (1) pyrite-arsenian pyrite ores with minor amounts of arsenopyrite, galena, tetrahedrite, chalcopyrite, and sphalerite, (2) quartz-illite-graphite alteration assemblage, (3) mineralized veins cross-cutting the foliation of metamorphic host rocks, (4) high antimony contents of pyrite (up to 1.7 wt) and rutile (up to 160 ppm), (5) relatively high ore-forming temperature (423 ± 9°C, calculated from arsenopyrite and graphite geothermometers), and (6) remobilized-sedimentary sulfur signature of the ores with a median δ34S of −9.8‰. Several lines of evidence suggest that placer gold was likely derived from the erosion of orogenic-type gold ores in the surrounding areas. This evidence includes the presence of gold-bearing ores hosted by low-grade metapelites and metagranitoid with characteristics of orogenic-type gold mineralization, whereas the VMS-type ores are barren in gold. The occurrence of the mid-oceanic ridge- and accretion zone-related mineralization in this area reflects the subduction and amalgamation of oceanic and continental crustal blocks during the Cretaceous period. Discovery of gold mineralization hosted in the Cretaceous basement rocks of the Sunda arc indicates the importance to broaden the gold exploration targets to include not only young volcanic rocks, but also relatively old metamorphic basement rocks. © 2022 Society of Resource Geology.
first_indexed 2024-03-14T00:04:49Z
format Article
id oai:generic.eprints.org:282125
institution Universiti Gadjah Mada
language English
last_indexed 2024-03-14T00:04:49Z
publishDate 2022
publisher Wiley-Blackwell
record_format dspace
spelling oai:generic.eprints.org:2821252023-11-30T00:58:02Z https://repository.ugm.ac.id/282125/ Primary source of placer gold in the Luk Ulo Metamorphic Complex, Central Java, Indonesia Suhendra, Renaldi Takahashi, Ryohei Imai, Akira Sato, Hinako Setiawan, Nugroho Imam Agangi, Andrea Geomatic Engineering not elsewhere classified The Luk Ulo Metamorphic Complex, Central Java is a product of the Cretaceous subduction and accretion, and includes diverse types of protoliths. Two-types of primary mineralization have been recognized in this area, namely, (1) seafloor basalt-hosted massive sulfide mineralization and (2) low-grade metamorphic rocks-hosted vein type mineralization. Later erosion of these types of primary mineralization formed placer gold deposits along rivers. However, the source has never been identified. Thus, this study aims at understanding the source of placer gold, the characteristics of the primary mineralization, and the tectonic evolution of the study area on the basis of mineralogy, mineral chemistry, whole-rock geochemistry, and sulfur isotope analyses. Volcanogenic massive sulfide (VMS)-type mineralization was identified in the seafloor basalt and few deep-sea sedimentary rocks, and both the ores and host rocks preserved pre-metamorphic textures and minerals. The characteristics of this VMS-type mineralization include (1) crustiform quartz veins with pyrite cutting the host rocks, (2) zonation of local silicification to interlayered chlorite/smectite-chlorite-laumontite-calcite-epidote alteration from central to outer zone, (3) pyrite-dominated ores with minor amounts of arsenian pyrite, chalcopyrite, and marcasite, (4) unmetamorphosed host rocks and ores, and (5) sulfur isotope signature with a median δ34S of +3.1‰ suggesting sulfur derived from magmatic source and/or sulfur extracted from basaltic rocks with a small contribution of biogenic sulfur. On the other hand, low-grade metamorphic rocks-hosted vein type mineralization was identified as orogenic-type gold mineralization, and the mineralized veins formed after the peak of metamorphism. It is characterized by (1) pyrite-arsenian pyrite ores with minor amounts of arsenopyrite, galena, tetrahedrite, chalcopyrite, and sphalerite, (2) quartz-illite-graphite alteration assemblage, (3) mineralized veins cross-cutting the foliation of metamorphic host rocks, (4) high antimony contents of pyrite (up to 1.7 wt) and rutile (up to 160 ppm), (5) relatively high ore-forming temperature (423 ± 9°C, calculated from arsenopyrite and graphite geothermometers), and (6) remobilized-sedimentary sulfur signature of the ores with a median δ34S of −9.8‰. Several lines of evidence suggest that placer gold was likely derived from the erosion of orogenic-type gold ores in the surrounding areas. This evidence includes the presence of gold-bearing ores hosted by low-grade metapelites and metagranitoid with characteristics of orogenic-type gold mineralization, whereas the VMS-type ores are barren in gold. The occurrence of the mid-oceanic ridge- and accretion zone-related mineralization in this area reflects the subduction and amalgamation of oceanic and continental crustal blocks during the Cretaceous period. Discovery of gold mineralization hosted in the Cretaceous basement rocks of the Sunda arc indicates the importance to broaden the gold exploration targets to include not only young volcanic rocks, but also relatively old metamorphic basement rocks. © 2022 Society of Resource Geology. Wiley-Blackwell 2022 Article PeerReviewed application/pdf en https://repository.ugm.ac.id/282125/1/Setiawan%20et%20al%20-%202022%20-%20Primary%20source%20of%20placer%20gold%20in%20the%20Luk%20Ulo%20Metamorphic.pdf Suhendra, Renaldi and Takahashi, Ryohei and Imai, Akira and Sato, Hinako and Setiawan, Nugroho Imam and Agangi, Andrea (2022) Primary source of placer gold in the Luk Ulo Metamorphic Complex, Central Java, Indonesia. Resource Geology, 72 (1). pp. 1-21. ISSN 13441698 https://onlinelibrary.wiley.com/doi/10.1111/rge.12300
spellingShingle Geomatic Engineering not elsewhere classified
Suhendra, Renaldi
Takahashi, Ryohei
Imai, Akira
Sato, Hinako
Setiawan, Nugroho Imam
Agangi, Andrea
Primary source of placer gold in the Luk Ulo Metamorphic Complex, Central Java, Indonesia
title Primary source of placer gold in the Luk Ulo Metamorphic Complex, Central Java, Indonesia
title_full Primary source of placer gold in the Luk Ulo Metamorphic Complex, Central Java, Indonesia
title_fullStr Primary source of placer gold in the Luk Ulo Metamorphic Complex, Central Java, Indonesia
title_full_unstemmed Primary source of placer gold in the Luk Ulo Metamorphic Complex, Central Java, Indonesia
title_short Primary source of placer gold in the Luk Ulo Metamorphic Complex, Central Java, Indonesia
title_sort primary source of placer gold in the luk ulo metamorphic complex central java indonesia
topic Geomatic Engineering not elsewhere classified
url https://repository.ugm.ac.id/282125/1/Setiawan%20et%20al%20-%202022%20-%20Primary%20source%20of%20placer%20gold%20in%20the%20Luk%20Ulo%20Metamorphic.pdf
work_keys_str_mv AT suhendrarenaldi primarysourceofplacergoldinthelukulometamorphiccomplexcentraljavaindonesia
AT takahashiryohei primarysourceofplacergoldinthelukulometamorphiccomplexcentraljavaindonesia
AT imaiakira primarysourceofplacergoldinthelukulometamorphiccomplexcentraljavaindonesia
AT satohinako primarysourceofplacergoldinthelukulometamorphiccomplexcentraljavaindonesia
AT setiawannugrohoimam primarysourceofplacergoldinthelukulometamorphiccomplexcentraljavaindonesia
AT agangiandrea primarysourceofplacergoldinthelukulometamorphiccomplexcentraljavaindonesia