Multi-loss Function in Robust Convolutional Autoencoder for Reconstruction Low-quality Fingerprint Image
Our research is fingerprint reconstruction based on a convolutional autoencoder. We combine the perceptual measurement as a multi-loss function to give satisfactory weight correction, such as the structural similarity index measure (SSIM), Mean Absolute Error (MAE), and peak signal-to-noise rat...
Main Authors: | , , , , , |
---|---|
Format: | Other |
Language: | English |
Published: |
Proceedings of 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022
2022
|
Subjects: | |
Online Access: | https://repository.ugm.ac.id/284285/1/169.Multi-loss_Function_in_Robust_Convolutional_Autoencoder_for_Reconstruction_Low-quality_Fingerprint_Image.pdf |
_version_ | 1826050776531730432 |
---|---|
author | Raswa, Farchan Hakim Halberd, Franki Harjoko, Agus Wahyono, Wahyono Lee, Chung-Ting Wang, Jia Ching |
author_facet | Raswa, Farchan Hakim Halberd, Franki Harjoko, Agus Wahyono, Wahyono Lee, Chung-Ting Wang, Jia Ching |
author_sort | Raswa, Farchan Hakim |
collection | UGM |
description | Our research is fingerprint reconstruction based on
a convolutional autoencoder. We combine the perceptual
measurement as a multi-loss function to give satisfactory weight
correction, such as the structural similarity index measure
(SSIM), Mean Absolute Error (MAE), and peak signal-to-noise
ratio (PSNR). We observed and investigated the result using
multi-loss functions and other loss functions. Eventually, our
experiment obtained the highest image quality metric scores from
the experimental result summarized as a loss function (SSIM +
PSNR) with optimizer Root Mean Squared Propagation
(RMSprop). We evaluated the image reconstruction using a
dataset from FVC2004. Eventually, our proposed method gets
impressive results, increasing the image's average quality by
PSNR of 20.58%, SSIM of 4.07%, and MSE of 38.92%,
respectively. |
first_indexed | 2024-03-14T00:09:54Z |
format | Other |
id | oai:generic.eprints.org:284285 |
institution | Universiti Gadjah Mada |
language | English |
last_indexed | 2024-03-14T00:09:54Z |
publishDate | 2022 |
publisher | Proceedings of 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022 |
record_format | dspace |
spelling | oai:generic.eprints.org:2842852023-12-06T08:30:15Z https://repository.ugm.ac.id/284285/ Multi-loss Function in Robust Convolutional Autoencoder for Reconstruction Low-quality Fingerprint Image Raswa, Farchan Hakim Halberd, Franki Harjoko, Agus Wahyono, Wahyono Lee, Chung-Ting Wang, Jia Ching Information and Computing Sciences Our research is fingerprint reconstruction based on a convolutional autoencoder. We combine the perceptual measurement as a multi-loss function to give satisfactory weight correction, such as the structural similarity index measure (SSIM), Mean Absolute Error (MAE), and peak signal-to-noise ratio (PSNR). We observed and investigated the result using multi-loss functions and other loss functions. Eventually, our experiment obtained the highest image quality metric scores from the experimental result summarized as a loss function (SSIM + PSNR) with optimizer Root Mean Squared Propagation (RMSprop). We evaluated the image reconstruction using a dataset from FVC2004. Eventually, our proposed method gets impressive results, increasing the image's average quality by PSNR of 20.58%, SSIM of 4.07%, and MSE of 38.92%, respectively. Proceedings of 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022 2022 Other NonPeerReviewed application/pdf en https://repository.ugm.ac.id/284285/1/169.Multi-loss_Function_in_Robust_Convolutional_Autoencoder_for_Reconstruction_Low-quality_Fingerprint_Image.pdf Raswa, Farchan Hakim and Halberd, Franki and Harjoko, Agus and Wahyono, Wahyono and Lee, Chung-Ting and Wang, Jia Ching (2022) Multi-loss Function in Robust Convolutional Autoencoder for Reconstruction Low-quality Fingerprint Image. Proceedings of 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2022. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9980345 10.23919/APSIPAASC55919.2022.9980345 |
spellingShingle | Information and Computing Sciences Raswa, Farchan Hakim Halberd, Franki Harjoko, Agus Wahyono, Wahyono Lee, Chung-Ting Wang, Jia Ching Multi-loss Function in Robust Convolutional Autoencoder for Reconstruction Low-quality Fingerprint Image |
title | Multi-loss Function in Robust Convolutional
Autoencoder for Reconstruction Low-quality
Fingerprint Image |
title_full | Multi-loss Function in Robust Convolutional
Autoencoder for Reconstruction Low-quality
Fingerprint Image |
title_fullStr | Multi-loss Function in Robust Convolutional
Autoencoder for Reconstruction Low-quality
Fingerprint Image |
title_full_unstemmed | Multi-loss Function in Robust Convolutional
Autoencoder for Reconstruction Low-quality
Fingerprint Image |
title_short | Multi-loss Function in Robust Convolutional
Autoencoder for Reconstruction Low-quality
Fingerprint Image |
title_sort | multi loss function in robust convolutional autoencoder for reconstruction low quality fingerprint image |
topic | Information and Computing Sciences |
url | https://repository.ugm.ac.id/284285/1/169.Multi-loss_Function_in_Robust_Convolutional_Autoencoder_for_Reconstruction_Low-quality_Fingerprint_Image.pdf |
work_keys_str_mv | AT raswafarchanhakim multilossfunctioninrobustconvolutionalautoencoderforreconstructionlowqualityfingerprintimage AT halberdfranki multilossfunctioninrobustconvolutionalautoencoderforreconstructionlowqualityfingerprintimage AT harjokoagus multilossfunctioninrobustconvolutionalautoencoderforreconstructionlowqualityfingerprintimage AT wahyonowahyono multilossfunctioninrobustconvolutionalautoencoderforreconstructionlowqualityfingerprintimage AT leechungting multilossfunctioninrobustconvolutionalautoencoderforreconstructionlowqualityfingerprintimage AT wangjiaching multilossfunctioninrobustconvolutionalautoencoderforreconstructionlowqualityfingerprintimage |