KAJIAN KEMAMPUAN JARINGAN SYARAF TIRUAN BERBASIS CITRA ALOS DALAM IDENTIFIKASI LAHAN KRITIS (Studi Kasus : Kecamatan Dlingo dan Sekitarnya)

Identification of critical land is generally done using the scoring method by overlaying maps of determinants (variables) of critical land. Non-scoring methods such as Artificial Neural Networks is rarely used. This research is expected to be an alternative reference method in the determination of c...

Full description

Bibliographic Details
Main Authors: , NURSIDA ARIF, , Drs. Projo Danoedoro, M.Sc.,PhD.
Format: Thesis
Published: [Yogyakarta] : Universitas Gadjah Mada 2012
Subjects:
ETD
_version_ 1826045250322300928
author , NURSIDA ARIF
, Drs. Projo Danoedoro, M.Sc.,PhD.
author_facet , NURSIDA ARIF
, Drs. Projo Danoedoro, M.Sc.,PhD.
author_sort , NURSIDA ARIF
collection UGM
description Identification of critical land is generally done using the scoring method by overlaying maps of determinants (variables) of critical land. Non-scoring methods such as Artificial Neural Networks is rarely used. This research is expected to be an alternative reference method in the determination of critical land that often uses spatial data. The purpose of this study was to determine the accuracy of the identification of critical land using Artificial Neural Networks by comparing the results of classification using spectral data and non-spectral data in the identification of critical land, and determine the effect of changing parameters of Artificial Neural Networks on the accuracy of the identification of critical land (iteration, the hidden layer, momentum, learning rate and RMS error). The research methodology consists of several stages of data collection, correction of image radiometry and geometry, field orientation, selection of the training areas, execution of the classification results using artificial neural network methods, as well as determining the accuracy of the test samples. The critical land parameters used are vegetation cover, slope, and depth of solume and soil texture. The sampling method used in this study was stratified random sampling method. The results of the research are in the form of critical lands map derived using neural network classification. The highest accuracy is obtained in a simulation using 7 channels by combining spectral and non spectral data that is 83.33%, occurred in the parameter with 1 (one) hidden layer
first_indexed 2024-03-13T22:34:11Z
format Thesis
id oai:generic.eprints.org:97882
institution Universiti Gadjah Mada
last_indexed 2024-03-13T22:34:11Z
publishDate 2012
publisher [Yogyakarta] : Universitas Gadjah Mada
record_format dspace
spelling oai:generic.eprints.org:978822016-03-04T08:47:59Z https://repository.ugm.ac.id/97882/ KAJIAN KEMAMPUAN JARINGAN SYARAF TIRUAN BERBASIS CITRA ALOS DALAM IDENTIFIKASI LAHAN KRITIS (Studi Kasus : Kecamatan Dlingo dan Sekitarnya) , NURSIDA ARIF , Drs. Projo Danoedoro, M.Sc.,PhD. ETD Identification of critical land is generally done using the scoring method by overlaying maps of determinants (variables) of critical land. Non-scoring methods such as Artificial Neural Networks is rarely used. This research is expected to be an alternative reference method in the determination of critical land that often uses spatial data. The purpose of this study was to determine the accuracy of the identification of critical land using Artificial Neural Networks by comparing the results of classification using spectral data and non-spectral data in the identification of critical land, and determine the effect of changing parameters of Artificial Neural Networks on the accuracy of the identification of critical land (iteration, the hidden layer, momentum, learning rate and RMS error). The research methodology consists of several stages of data collection, correction of image radiometry and geometry, field orientation, selection of the training areas, execution of the classification results using artificial neural network methods, as well as determining the accuracy of the test samples. The critical land parameters used are vegetation cover, slope, and depth of solume and soil texture. The sampling method used in this study was stratified random sampling method. The results of the research are in the form of critical lands map derived using neural network classification. The highest accuracy is obtained in a simulation using 7 channels by combining spectral and non spectral data that is 83.33%, occurred in the parameter with 1 (one) hidden layer [Yogyakarta] : Universitas Gadjah Mada 2012 Thesis NonPeerReviewed , NURSIDA ARIF and , Drs. Projo Danoedoro, M.Sc.,PhD. (2012) KAJIAN KEMAMPUAN JARINGAN SYARAF TIRUAN BERBASIS CITRA ALOS DALAM IDENTIFIKASI LAHAN KRITIS (Studi Kasus : Kecamatan Dlingo dan Sekitarnya). UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=52952
spellingShingle ETD
, NURSIDA ARIF
, Drs. Projo Danoedoro, M.Sc.,PhD.
KAJIAN KEMAMPUAN JARINGAN SYARAF TIRUAN BERBASIS CITRA ALOS DALAM IDENTIFIKASI LAHAN KRITIS (Studi Kasus : Kecamatan Dlingo dan Sekitarnya)
title KAJIAN KEMAMPUAN JARINGAN SYARAF TIRUAN BERBASIS CITRA ALOS DALAM IDENTIFIKASI LAHAN KRITIS (Studi Kasus : Kecamatan Dlingo dan Sekitarnya)
title_full KAJIAN KEMAMPUAN JARINGAN SYARAF TIRUAN BERBASIS CITRA ALOS DALAM IDENTIFIKASI LAHAN KRITIS (Studi Kasus : Kecamatan Dlingo dan Sekitarnya)
title_fullStr KAJIAN KEMAMPUAN JARINGAN SYARAF TIRUAN BERBASIS CITRA ALOS DALAM IDENTIFIKASI LAHAN KRITIS (Studi Kasus : Kecamatan Dlingo dan Sekitarnya)
title_full_unstemmed KAJIAN KEMAMPUAN JARINGAN SYARAF TIRUAN BERBASIS CITRA ALOS DALAM IDENTIFIKASI LAHAN KRITIS (Studi Kasus : Kecamatan Dlingo dan Sekitarnya)
title_short KAJIAN KEMAMPUAN JARINGAN SYARAF TIRUAN BERBASIS CITRA ALOS DALAM IDENTIFIKASI LAHAN KRITIS (Studi Kasus : Kecamatan Dlingo dan Sekitarnya)
title_sort kajian kemampuan jaringan syaraf tiruan berbasis citra alos dalam identifikasi lahan kritis studi kasus kecamatan dlingo dan sekitarnya
topic ETD
work_keys_str_mv AT nursidaarif kajiankemampuanjaringansyaraftiruanberbasiscitraalosdalamidentifikasilahankritisstudikasuskecamatandlingodansekitarnya
AT drsprojodanoedoromscphd kajiankemampuanjaringansyaraftiruanberbasiscitraalosdalamidentifikasilahankritisstudikasuskecamatandlingodansekitarnya