KLASIFIKASI FASE RETINOPATI DIABETES MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK

) Diabetic retinopathy (DR is one of the complications on retina caused by diabetes. The study aims to develop a system that can be used for automatic mass screenings of diabetic retinopathy. Four classes are identified: normal retina, non-proliferative diabetic retinopathy (NPDR), proliferative dia...

Full description

Bibliographic Details
Main Authors: , Rocky Yefrenes Dillak, , Drs. Agus Harjoko, M.Sc, Ph.D
Format: Thesis
Published: [Yogyakarta] : Universitas Gadjah Mada 2012
Subjects:
ETD
_version_ 1797032580521918464
author , Rocky Yefrenes Dillak
, Drs. Agus Harjoko, M.Sc, Ph.D
author_facet , Rocky Yefrenes Dillak
, Drs. Agus Harjoko, M.Sc, Ph.D
author_sort , Rocky Yefrenes Dillak
collection UGM
description ) Diabetic retinopathy (DR is one of the complications on retina caused by diabetes. The study aims to develop a system that can be used for automatic mass screenings of diabetic retinopathy. Four classes are identified: normal retina, non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and macular edema (ME). Ninety-seven retinal fundus images were used in this study. Six different texture features such as maximum probability, correlation, contrast, energy, homogeneity, and entropy were extracted from the digital fundus images using gray level cooccurence matrix (GLCM). The features were fed into a backpropagation neural network classifier for automatic classification. The proposed approach is able to classify with sensitivity 100%, specificity 100%, and accuracy 90.68%
first_indexed 2024-03-13T22:40:18Z
format Thesis
id oai:generic.eprints.org:99813
institution Universiti Gadjah Mada
last_indexed 2024-03-13T22:40:18Z
publishDate 2012
publisher [Yogyakarta] : Universitas Gadjah Mada
record_format dspace
spelling oai:generic.eprints.org:998132016-03-04T08:48:39Z https://repository.ugm.ac.id/99813/ KLASIFIKASI FASE RETINOPATI DIABETES MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK , Rocky Yefrenes Dillak , Drs. Agus Harjoko, M.Sc, Ph.D ETD ) Diabetic retinopathy (DR is one of the complications on retina caused by diabetes. The study aims to develop a system that can be used for automatic mass screenings of diabetic retinopathy. Four classes are identified: normal retina, non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and macular edema (ME). Ninety-seven retinal fundus images were used in this study. Six different texture features such as maximum probability, correlation, contrast, energy, homogeneity, and entropy were extracted from the digital fundus images using gray level cooccurence matrix (GLCM). The features were fed into a backpropagation neural network classifier for automatic classification. The proposed approach is able to classify with sensitivity 100%, specificity 100%, and accuracy 90.68% [Yogyakarta] : Universitas Gadjah Mada 2012 Thesis NonPeerReviewed , Rocky Yefrenes Dillak and , Drs. Agus Harjoko, M.Sc, Ph.D (2012) KLASIFIKASI FASE RETINOPATI DIABETES MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=56213
spellingShingle ETD
, Rocky Yefrenes Dillak
, Drs. Agus Harjoko, M.Sc, Ph.D
KLASIFIKASI FASE RETINOPATI DIABETES MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK
title KLASIFIKASI FASE RETINOPATI DIABETES MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK
title_full KLASIFIKASI FASE RETINOPATI DIABETES MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK
title_fullStr KLASIFIKASI FASE RETINOPATI DIABETES MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK
title_full_unstemmed KLASIFIKASI FASE RETINOPATI DIABETES MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK
title_short KLASIFIKASI FASE RETINOPATI DIABETES MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK
title_sort klasifikasi fase retinopati diabetes menggunakan backpropagation neural network
topic ETD
work_keys_str_mv AT rockyyefrenesdillak klasifikasifaseretinopatidiabetesmenggunakanbackpropagationneuralnetwork
AT drsagusharjokomscphd klasifikasifaseretinopatidiabetesmenggunakanbackpropagationneuralnetwork