Study on the adsorption of pb(ii) onto citric acid and monosodium glutamate modified rubber leaf powder / Ahmad Faisal Fadzil

To date, studies related to natural adsorbents were found to show promising potential as an alternative to current wastewater treatment methods. Most of the studies were found to center on the modified natural adsorbents as an alternative to activated carbon. However, little study has been done to e...

Full description

Bibliographic Details
Main Author: Fadzil, Ahmad Faisal
Format: Thesis
Language:English
Published: 2014
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/13819/1/TM_AHMAD%20FAISAL%20FADZIL%20AS%2014_5%201.pdf
_version_ 1796899893383528448
author Fadzil, Ahmad Faisal
author_facet Fadzil, Ahmad Faisal
author_sort Fadzil, Ahmad Faisal
collection UITM
description To date, studies related to natural adsorbents were found to show promising potential as an alternative to current wastewater treatment methods. Most of the studies were found to center on the modified natural adsorbents as an alternative to activated carbon. However, little study has been done to explore the influence of modification of natural adsorbents using organic acids. This research attempts to fill in this knowledge gap by studying the influence and performance of citric acid and monosodium glutamate modified rubber leaf powder. Three main components of this study are the characterisation of modified adsorbents regarding their physicochemical properties; the adsorptive performance of the adsorbents in treating Pb(II) from aqueous solutions; and non-linear mathematical modelling on the adsorption data. Pb(II) adsorption studies were investigated under batch and fixed bed column modes. The results emerge to suggest that the amount of Pb(II) adsorbed increased with increasing pH, contact time, initial Pb(II) concentration, adsorbent dosage and temperature for for citric acid modifed rubber leaf powder (CARL) and monosodium glutamate modified rubber leaf powder (MGRL). The adsorption data suggests that the kinetics of Pb(II) adsorption by CARL and MGRL fits well with pseudo-second order model. This model theorises that chemisorption could be the rate determining step for Pb(II) adsorption. The equilibrium time was achieved within 90 min for CARL and MGRL. Adsorption of Pb(II) followed the Langmuir isotherm model for MGRL with the monolayer adsorption capacities of 125.82 mg/g. The qmax achieved by CARL was 97.19 mg/g. The optimum adsorption process occurred at pH 4. Possible mechanisms involved in the Pb(II) adsorption by CARL and MGRL were mainly physical adsorption and chemical adsorption, respectively. The findings from the FTIR spectra and Dubinin-Radushkevic isotherm model investigation supports the mechanism suggested. For both adsorbents, the rate limiting step is chemisorption. Fixed bed column data were in good agreement with the Thomas which predicts the maximum adsorption capacity and breakthrough curve and Yoon-Nelson model which predicts the service life of a column. The maximum adsorption capacity for the columns were 37.70 to 48.70 mg/g for CARL and 51.28 to 75.76 mg/g for MGRL. From both batch and fixed bed column studies, MGRL proved superior to CARL by having higher maximum adsorption capacities and longer service life.
first_indexed 2024-03-06T01:27:39Z
format Thesis
id oai:ir.uitm.edu.my:13819
institution Universiti Teknologi MARA
language English
last_indexed 2024-03-06T01:27:39Z
publishDate 2014
record_format dspace
spelling oai:ir.uitm.edu.my:138192022-03-30T05:11:38Z https://ir.uitm.edu.my/id/eprint/13819/ Study on the adsorption of pb(ii) onto citric acid and monosodium glutamate modified rubber leaf powder / Ahmad Faisal Fadzil Fadzil, Ahmad Faisal Flocculation, precipitation, adsorption, etc. Coagulation To date, studies related to natural adsorbents were found to show promising potential as an alternative to current wastewater treatment methods. Most of the studies were found to center on the modified natural adsorbents as an alternative to activated carbon. However, little study has been done to explore the influence of modification of natural adsorbents using organic acids. This research attempts to fill in this knowledge gap by studying the influence and performance of citric acid and monosodium glutamate modified rubber leaf powder. Three main components of this study are the characterisation of modified adsorbents regarding their physicochemical properties; the adsorptive performance of the adsorbents in treating Pb(II) from aqueous solutions; and non-linear mathematical modelling on the adsorption data. Pb(II) adsorption studies were investigated under batch and fixed bed column modes. The results emerge to suggest that the amount of Pb(II) adsorbed increased with increasing pH, contact time, initial Pb(II) concentration, adsorbent dosage and temperature for for citric acid modifed rubber leaf powder (CARL) and monosodium glutamate modified rubber leaf powder (MGRL). The adsorption data suggests that the kinetics of Pb(II) adsorption by CARL and MGRL fits well with pseudo-second order model. This model theorises that chemisorption could be the rate determining step for Pb(II) adsorption. The equilibrium time was achieved within 90 min for CARL and MGRL. Adsorption of Pb(II) followed the Langmuir isotherm model for MGRL with the monolayer adsorption capacities of 125.82 mg/g. The qmax achieved by CARL was 97.19 mg/g. The optimum adsorption process occurred at pH 4. Possible mechanisms involved in the Pb(II) adsorption by CARL and MGRL were mainly physical adsorption and chemical adsorption, respectively. The findings from the FTIR spectra and Dubinin-Radushkevic isotherm model investigation supports the mechanism suggested. For both adsorbents, the rate limiting step is chemisorption. Fixed bed column data were in good agreement with the Thomas which predicts the maximum adsorption capacity and breakthrough curve and Yoon-Nelson model which predicts the service life of a column. The maximum adsorption capacity for the columns were 37.70 to 48.70 mg/g for CARL and 51.28 to 75.76 mg/g for MGRL. From both batch and fixed bed column studies, MGRL proved superior to CARL by having higher maximum adsorption capacities and longer service life. 2014-11 Thesis NonPeerReviewed text en https://ir.uitm.edu.my/id/eprint/13819/1/TM_AHMAD%20FAISAL%20FADZIL%20AS%2014_5%201.pdf Study on the adsorption of pb(ii) onto citric acid and monosodium glutamate modified rubber leaf powder / Ahmad Faisal Fadzil. (2014) Masters thesis, thesis, Universiti Teknologi MARA. <http://terminalib.uitm.edu.my/13819.pdf>
spellingShingle Flocculation, precipitation, adsorption, etc. Coagulation
Fadzil, Ahmad Faisal
Study on the adsorption of pb(ii) onto citric acid and monosodium glutamate modified rubber leaf powder / Ahmad Faisal Fadzil
title Study on the adsorption of pb(ii) onto citric acid and monosodium glutamate modified rubber leaf powder / Ahmad Faisal Fadzil
title_full Study on the adsorption of pb(ii) onto citric acid and monosodium glutamate modified rubber leaf powder / Ahmad Faisal Fadzil
title_fullStr Study on the adsorption of pb(ii) onto citric acid and monosodium glutamate modified rubber leaf powder / Ahmad Faisal Fadzil
title_full_unstemmed Study on the adsorption of pb(ii) onto citric acid and monosodium glutamate modified rubber leaf powder / Ahmad Faisal Fadzil
title_short Study on the adsorption of pb(ii) onto citric acid and monosodium glutamate modified rubber leaf powder / Ahmad Faisal Fadzil
title_sort study on the adsorption of pb ii onto citric acid and monosodium glutamate modified rubber leaf powder ahmad faisal fadzil
topic Flocculation, precipitation, adsorption, etc. Coagulation
url https://ir.uitm.edu.my/id/eprint/13819/1/TM_AHMAD%20FAISAL%20FADZIL%20AS%2014_5%201.pdf
work_keys_str_mv AT fadzilahmadfaisal studyontheadsorptionofpbiiontocitricacidandmonosodiumglutamatemodifiedrubberleafpowderahmadfaisalfadzil