Fabrication of nanostructured ZnO/MgO bilayer with PVDF-TrFE layer for metal-ferroelectric-insulator-metal (MFIM) capacitor application / Habibah Zulkefle
The nano-MgO films, nano-ZnO films and nanostructured ZnO/MgO bilayer films were synthesized using sol-gel spin coating method. The uniform and smooth nano-ZnO film was utilized as the oxide dielectric template to produce nanostructured ZnO/MgO bilayer films. The nano- MgO films and nanostructured Z...
Main Author: | |
---|---|
Format: | Book Section |
Language: | English |
Published: |
Institute of Graduate Studies, UiTM
2017
|
Subjects: | |
Online Access: | https://ir.uitm.edu.my/id/eprint/19738/1/ABS_HABIBAH%20ZULKEFLE%20TDRA%20VOL%2011%20IGS%2017.pdf |
_version_ | 1796901062596100096 |
---|---|
author | Zulkefle, Habibah |
author_facet | Zulkefle, Habibah |
author_sort | Zulkefle, Habibah |
collection | UITM |
description | The nano-MgO films, nano-ZnO films and nanostructured ZnO/MgO bilayer films were synthesized using sol-gel spin coating method. The uniform and smooth nano-ZnO film was utilized as the oxide dielectric template to produce nanostructured ZnO/MgO bilayer films. The nano- MgO films and nanostructured ZnO/MgO bilayer films were deposited at various deposition parameters (solution concentration, number of layer and annealing temperature). The effect of deposition parameters towards morphology and dielectric properties of nano-MgO films and nanostructured ZnO/MgO bilayer films was investigated. The variation of solution concentrations revealed that nano-MgO film and nanostructured ZnO/MgO bilayer film with 0.4M concentration produced improvement in the electrical properties as seen by the uniform particle distribution. The 0.4M nanostructured ZnO/MgO bilayer film showed an increment in dielectric constant, k (5.71) in comparison to 0.4M nano-MgO single layer film. Hence, 0.4M concentration was the optimized solution concentration utilized for both nano-MgO films and nanostructured ZnO/MgO bilayer films, for investigating the number of deposition layers of these films… |
first_indexed | 2024-03-06T01:44:31Z |
format | Book Section |
id | oai:ir.uitm.edu.my:19738 |
institution | Universiti Teknologi MARA |
language | English |
last_indexed | 2024-03-06T01:44:31Z |
publishDate | 2017 |
publisher | Institute of Graduate Studies, UiTM |
record_format | dspace |
spelling | oai:ir.uitm.edu.my:197382018-06-07T06:59:45Z https://ir.uitm.edu.my/id/eprint/19738/ Fabrication of nanostructured ZnO/MgO bilayer with PVDF-TrFE layer for metal-ferroelectric-insulator-metal (MFIM) capacitor application / Habibah Zulkefle Zulkefle, Habibah Malaysia The nano-MgO films, nano-ZnO films and nanostructured ZnO/MgO bilayer films were synthesized using sol-gel spin coating method. The uniform and smooth nano-ZnO film was utilized as the oxide dielectric template to produce nanostructured ZnO/MgO bilayer films. The nano- MgO films and nanostructured ZnO/MgO bilayer films were deposited at various deposition parameters (solution concentration, number of layer and annealing temperature). The effect of deposition parameters towards morphology and dielectric properties of nano-MgO films and nanostructured ZnO/MgO bilayer films was investigated. The variation of solution concentrations revealed that nano-MgO film and nanostructured ZnO/MgO bilayer film with 0.4M concentration produced improvement in the electrical properties as seen by the uniform particle distribution. The 0.4M nanostructured ZnO/MgO bilayer film showed an increment in dielectric constant, k (5.71) in comparison to 0.4M nano-MgO single layer film. Hence, 0.4M concentration was the optimized solution concentration utilized for both nano-MgO films and nanostructured ZnO/MgO bilayer films, for investigating the number of deposition layers of these films… Institute of Graduate Studies, UiTM 2017 Book Section PeerReviewed text en https://ir.uitm.edu.my/id/eprint/19738/1/ABS_HABIBAH%20ZULKEFLE%20TDRA%20VOL%2011%20IGS%2017.pdf Fabrication of nanostructured ZnO/MgO bilayer with PVDF-TrFE layer for metal-ferroelectric-insulator-metal (MFIM) capacitor application / Habibah Zulkefle. (2017) In: The Doctoral Research Abstracts. IGS Biannual Publication, 11 (11). Institute of Graduate Studies, UiTM, Shah Alam. |
spellingShingle | Malaysia Zulkefle, Habibah Fabrication of nanostructured ZnO/MgO bilayer with PVDF-TrFE layer for metal-ferroelectric-insulator-metal (MFIM) capacitor application / Habibah Zulkefle |
title | Fabrication of nanostructured ZnO/MgO bilayer with PVDF-TrFE layer for metal-ferroelectric-insulator-metal (MFIM) capacitor application / Habibah Zulkefle |
title_full | Fabrication of nanostructured ZnO/MgO bilayer with PVDF-TrFE layer for metal-ferroelectric-insulator-metal (MFIM) capacitor application / Habibah Zulkefle |
title_fullStr | Fabrication of nanostructured ZnO/MgO bilayer with PVDF-TrFE layer for metal-ferroelectric-insulator-metal (MFIM) capacitor application / Habibah Zulkefle |
title_full_unstemmed | Fabrication of nanostructured ZnO/MgO bilayer with PVDF-TrFE layer for metal-ferroelectric-insulator-metal (MFIM) capacitor application / Habibah Zulkefle |
title_short | Fabrication of nanostructured ZnO/MgO bilayer with PVDF-TrFE layer for metal-ferroelectric-insulator-metal (MFIM) capacitor application / Habibah Zulkefle |
title_sort | fabrication of nanostructured zno mgo bilayer with pvdf trfe layer for metal ferroelectric insulator metal mfim capacitor application habibah zulkefle |
topic | Malaysia |
url | https://ir.uitm.edu.my/id/eprint/19738/1/ABS_HABIBAH%20ZULKEFLE%20TDRA%20VOL%2011%20IGS%2017.pdf |
work_keys_str_mv | AT zulkeflehabibah fabricationofnanostructuredznomgobilayerwithpvdftrfelayerformetalferroelectricinsulatormetalmfimcapacitorapplicationhabibahzulkefle |