Geometrical effect on the behavior of embankment on soft ground

Thesis (PhD. (Civil Engineering)

Bibliographic Details
Main Author: Sobhanmanesh, Ali
Format: Thesis
Language:English
Published: Universiti Teknologi Malaysia 2024
Subjects:
Online Access:https://openscience.utm.my/handle/123456789/1287
_version_ 1825623295494455296
author Sobhanmanesh, Ali
author_facet Sobhanmanesh, Ali
author_sort Sobhanmanesh, Ali
collection OpenScience
description Thesis (PhD. (Civil Engineering)
first_indexed 2024-09-23T23:50:20Z
format Thesis
id oai:openscience.utm.my:123456789/1287
institution Universiti Teknologi Malaysia - OpenScience
language English
last_indexed 2024-09-23T23:50:20Z
publishDate 2024
publisher Universiti Teknologi Malaysia
record_format dspace
spelling oai:openscience.utm.my:123456789/12872024-08-26T17:55:07Z Geometrical effect on the behavior of embankment on soft ground Sobhanmanesh, Ali Embankments—Design and construction Soil mechanics Shear strength of soils—Testing Thesis (PhD. (Civil Engineering) Many embankments constructed on soft ground are susceptible to failure and large settlements due to its low strength soil condition. Geosynthetics are used effectively as a reinforced material to increase the shear strength, and stiffness of the reinforced embankment and consequently, to reduce the total and differential settlements. In the first part of the study, four different cases of embankments with and without reinforcement, constructed on soft and stiff grounds were studied through small-scale physical modeling using centrifuge test and numerical modeling using finite element simulation. Comparison between the results using both finite element models and centrifuge tests was carried out to validate and identifies the reliability of the finite element method. In centrifuge test, a model scale with various sizes was simulated to a constant full-scale dimension using different acceleration fields. The results show the different deformation behavior for these different embankment cases and indicate the significant effect of the geosynthetics reinforcement on increasing the stability of embankment. The comparison analysis presents a good agreement between results of these two methods. It validated the finite element technique in analysis of different embankment cases. The second part of the study focus on the geometrical effects on the behavior and failure mechanism of embankments. Two full-scale case history embankments in Malaysia and Canada, the Muar trial embankment and Vernon highway embankment were verified. Three dimensional effects on Muar trial embankment were evaluated by comparing the results of two and three-dimensional analysis, in terms of predicted displacements, lateral movements, excess pore pressure, factor of safety, and failure height of the embankment fill. Moreover, this study attempt to evaluate the boundary limits for the applicability of two and three-dimensional analyses by determining the suitable geometry configuration of embankment in utilizing the geotechnical analysis. The ratio of the calculated failure height of three to two dimensional Finite Element analyses (Hf,3D/Hf,2D) has been determine for embankment cases with different base aspect ratio of the length to width (L/B). Two shape-factor equations related to the bearing capacity of spread footings and safety factor of embankments also utilized to account for the geometrical behavior of the embankment regards to its geometrical configuration. Results of three-dimensional analyses have better agreement with the actual field measurements. It is concluded that neglecting the three dimensional effects could mislead the design of the embankment in some condition. In conclusion, it is recommended that for “long embankment” with the length to width ratio more than two (L/B > 2), it may appropriate to use two-dimensional analysis as the three-dimensional safety factor converges to two dimensional safety factor. For “short embankment” with the length to width ratio less than two (L/B < 2), three dimensional effects on the embankment behavior becomes considerably great and should be considered as important factor in design and analysis of embankments Faculty of Civil Engineering 2024-08-21T14:54:14Z 2024-08-21T14:54:14Z 2015 Thesis Dataset https://openscience.utm.my/handle/123456789/1287 en application/pdf application/pdf application/pdf application/pdf Universiti Teknologi Malaysia
spellingShingle Embankments—Design and construction
Soil mechanics
Shear strength of soils—Testing
Sobhanmanesh, Ali
Geometrical effect on the behavior of embankment on soft ground
title Geometrical effect on the behavior of embankment on soft ground
title_full Geometrical effect on the behavior of embankment on soft ground
title_fullStr Geometrical effect on the behavior of embankment on soft ground
title_full_unstemmed Geometrical effect on the behavior of embankment on soft ground
title_short Geometrical effect on the behavior of embankment on soft ground
title_sort geometrical effect on the behavior of embankment on soft ground
topic Embankments—Design and construction
Soil mechanics
Shear strength of soils—Testing
url https://openscience.utm.my/handle/123456789/1287
work_keys_str_mv AT sobhanmaneshali geometricaleffectonthebehaviorofembankmentonsoftground