Google Trends and Baidu index data in tourism demand forecasting: a critical assessment of recent applications

The application of search query (SQ) data in tourism demand forecasting is an intriguing area of ongoing research. The present research note aims to (i) critically examine recent studies from leading tourism journals using SQ data for demand forecasting, (ii) synthesize the prevailing key problems,...

Бүрэн тодорхойлолт

Номзүйн дэлгэрэнгүй
Үндсэн зохиолчид: Mikulić, Josip, Baumgärtner, Regina M.
Формат: Өгүүллэг
Хэвлэсэн: Elsevier 2025
Нөхцлүүд:
_version_ 1825625969481744384
author Mikulić, Josip
Baumgärtner, Regina M.
author_facet Mikulić, Josip
Baumgärtner, Regina M.
author_sort Mikulić, Josip
collection LMU
description The application of search query (SQ) data in tourism demand forecasting is an intriguing area of ongoing research. The present research note aims to (i) critically examine recent studies from leading tourism journals using SQ data for demand forecasting, (ii) synthesize the prevailing key problems, limitations and challenges in the studies, and (iii) provide recommendations emerging from the critical assessment of literature to help improve the quality of future SQ-data-based tourism forecasting research.
first_indexed 2025-03-04T01:43:18Z
format Article
id oai:repository.londonmet.ac.uk:10132
institution London Metropolitan University
last_indexed 2025-03-04T01:43:18Z
publishDate 2025
publisher Elsevier
record_format eprints
spelling oai:repository.londonmet.ac.uk:101322025-02-28T11:54:06Z https://repository.londonmet.ac.uk/10132/ Google Trends and Baidu index data in tourism demand forecasting: a critical assessment of recent applications Mikulić, Josip Baumgärtner, Regina M. 330 Economics The application of search query (SQ) data in tourism demand forecasting is an intriguing area of ongoing research. The present research note aims to (i) critically examine recent studies from leading tourism journals using SQ data for demand forecasting, (ii) synthesize the prevailing key problems, limitations and challenges in the studies, and (iii) provide recommendations emerging from the critical assessment of literature to help improve the quality of future SQ-data-based tourism forecasting research. Elsevier 2025-10 Article PeerReviewed Mikulić, Josip and Baumgärtner, Regina M. (2025) Google Trends and Baidu index data in tourism demand forecasting: a critical assessment of recent applications. Tourism Management, 110 (105164). pp. 1-5. ISSN 0261-5177 https://doi.org/10.1016/j.tourman.2025.105164 10.1016/j.tourman.2025.105164 10.1016/j.tourman.2025.105164
spellingShingle 330 Economics
Mikulić, Josip
Baumgärtner, Regina M.
Google Trends and Baidu index data in tourism demand forecasting: a critical assessment of recent applications
title Google Trends and Baidu index data in tourism demand forecasting: a critical assessment of recent applications
title_full Google Trends and Baidu index data in tourism demand forecasting: a critical assessment of recent applications
title_fullStr Google Trends and Baidu index data in tourism demand forecasting: a critical assessment of recent applications
title_full_unstemmed Google Trends and Baidu index data in tourism demand forecasting: a critical assessment of recent applications
title_short Google Trends and Baidu index data in tourism demand forecasting: a critical assessment of recent applications
title_sort google trends and baidu index data in tourism demand forecasting a critical assessment of recent applications
topic 330 Economics
work_keys_str_mv AT mikulicjosip googletrendsandbaiduindexdataintourismdemandforecastingacriticalassessmentofrecentapplications
AT baumgartnerreginam googletrendsandbaiduindexdataintourismdemandforecastingacriticalassessmentofrecentapplications