Stochastic dominance and opaque sweetening

This paper addresses the problem of opaque sweetening and argues that one should use stochastic dominance in comparing lotteries even when dealing with incomplete orderings that allow for non-comparable outcomes.

Bibliographic Details
Main Author: Bader, R
Format: Journal article
Published: Routledge 2017
_version_ 1797050211575529472
author Bader, R
author_facet Bader, R
author_sort Bader, R
collection OXFORD
description This paper addresses the problem of opaque sweetening and argues that one should use stochastic dominance in comparing lotteries even when dealing with incomplete orderings that allow for non-comparable outcomes.
first_indexed 2024-03-06T18:01:49Z
format Journal article
id oxford-uuid:000a9838-8c7e-46a3-b12d-3438ce9682a8
institution University of Oxford
last_indexed 2024-03-06T18:01:49Z
publishDate 2017
publisher Routledge
record_format dspace
spelling oxford-uuid:000a9838-8c7e-46a3-b12d-3438ce9682a82022-03-26T08:27:18ZStochastic dominance and opaque sweeteningJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:000a9838-8c7e-46a3-b12d-3438ce9682a8Symplectic Elements at OxfordRoutledge2017Bader, RThis paper addresses the problem of opaque sweetening and argues that one should use stochastic dominance in comparing lotteries even when dealing with incomplete orderings that allow for non-comparable outcomes.
spellingShingle Bader, R
Stochastic dominance and opaque sweetening
title Stochastic dominance and opaque sweetening
title_full Stochastic dominance and opaque sweetening
title_fullStr Stochastic dominance and opaque sweetening
title_full_unstemmed Stochastic dominance and opaque sweetening
title_short Stochastic dominance and opaque sweetening
title_sort stochastic dominance and opaque sweetening
work_keys_str_mv AT baderr stochasticdominanceandopaquesweetening