Learning affordances in object-centric generative models
Given visual observations of a reaching task together with a stick-like tool, we propose a novel approach that learns to exploit task-relevant object affordances by combining generative modelling with a task-based performance predictor. The embedding learned by the generative model captures the fact...
Հիմնական հեղինակներ: | Wu, Y, Kasewa, S, Groth, O, Salter, S, Sun, L, Parker Jones, O, Posner, H |
---|---|
Ձևաչափ: | Conference item |
Լեզու: | English |
Հրապարակվել է: |
International Conference on Machine Learning
2020
|
Նմանատիպ նյութեր
-
Reconstruction bottlenecks in object-centric generative models
: Engelcke, M, և այլն
Հրապարակվել է: (2020) -
GENESIS: generative scene inference and sampling of object-centric latent representations
: Engelcke, M, և այլն
Հրապարակվել է: (2020) -
APEX: Unsupervised, object-centric scene segmentation and tracking for robot manipulation
: Wu, Y, և այլն
Հրապարակվել է: (2021) -
Object-centric generative models for robot perception and action
: Wu, Y
Հրապարակվել է: (2023) -
DreamUp3D: object-centric generative models for single-view 3D scene understanding and real-to-sim transfer
: Wu, Y, և այլն
Հրապարակվել է: (2024)