Model theory of finite-by-Presburger Abelian groups and finite extensions of $p$-adic fields
We define a class of pre-ordered abelian groups that we call finite-by-Presburger groups, and prove that their theory is model-complete. We show that certain quotients of the multiplicative group of a local field of characteristic zero are finite-by-Presburger and interpret the higher residue rings...
Hlavní autoři: | Derakhshan, J, Macintyre, A |
---|---|
Médium: | Journal article |
Vydáno: |
Cornell University
2016
|
Podobné jednotky
-
Enrichments of Boolean algebras by Presburger predicates
Autor: Derakhshan, J, a další
Vydáno: (2017) -
On the decidability of the field of maximal abelian extension of p-adic numbers
Autor: Wang, C
Vydáno: (2018) -
Model completeness for Henselian fields with finite ramification valued in a $Z$-group
Autor: Derakhshan, J, a další
Vydáno: (2016) -
Actions of finite abelian groups /
Autor: 464555 Kosniowski, Czes
Vydáno: (1978) -
On Undecidability of Finite Subsets Theory for Torsion Abelian Groups
Autor: Sergey Mikhailovich Dudakov
Vydáno: (2022-02-01)