Model theory of finite-by-Presburger Abelian groups and finite extensions of $p$-adic fields
We define a class of pre-ordered abelian groups that we call finite-by-Presburger groups, and prove that their theory is model-complete. We show that certain quotients of the multiplicative group of a local field of characteristic zero are finite-by-Presburger and interpret the higher residue rings...
Главные авторы: | Derakhshan, J, Macintyre, A |
---|---|
Формат: | Journal article |
Опубликовано: |
Cornell University
2016
|
Схожие документы
-
Enrichments of Boolean algebras by Presburger predicates
по: Derakhshan, J, и др.
Опубликовано: (2017) -
On the decidability of the field of maximal abelian extension of p-adic numbers
по: Wang, C
Опубликовано: (2018) -
Model completeness for Henselian fields with finite ramification valued in a $Z$-group
по: Derakhshan, J, и др.
Опубликовано: (2016) -
Actions of finite abelian groups /
по: 464555 Kosniowski, Czes
Опубликовано: (1978) -
On Undecidability of Finite Subsets Theory for Torsion Abelian Groups
по: Sergey Mikhailovich Dudakov
Опубликовано: (2022-02-01)