Tangent unit-vector fields: nonabelian homotopy invariants and the Dirichlet energy

Let O be a closed geodesic polygon in S2 . Maps from O into S 2 are said to satisfy tangent boundary conditions if the edges of O are mapped into the geodesics which contain them. Taking O to be an octant of S2 , we evaluate the infimum Dirichlet energy, E(H), for continuous tangent maps of arbitrar...

Full description

Bibliographic Details
Main Authors: Majumdar, A, Robbins, J, Zyskin, M
Format: Journal article
Published: 2009
_version_ 1797050421808726016
author Majumdar, A
Robbins, J
Zyskin, M
author_facet Majumdar, A
Robbins, J
Zyskin, M
author_sort Majumdar, A
collection OXFORD
description Let O be a closed geodesic polygon in S2 . Maps from O into S 2 are said to satisfy tangent boundary conditions if the edges of O are mapped into the geodesics which contain them. Taking O to be an octant of S2 , we evaluate the infimum Dirichlet energy, E(H), for continuous tangent maps of arbitrary homotopy type H. The expression for E(H) involves a topological invariant – the spelling length – associated with the (nonabelian) fundamental group of the n-times punctured two-sphere, π1(S 2 −{s1 , . . . , sn },∗). These results have applications for the theoretical modelling of nematic liquid crystal devices.
first_indexed 2024-03-06T18:04:54Z
format Journal article
id oxford-uuid:011d7437-583a-4972-917e-88921ce8f23a
institution University of Oxford
last_indexed 2024-03-06T18:04:54Z
publishDate 2009
record_format dspace
spelling oxford-uuid:011d7437-583a-4972-917e-88921ce8f23a2022-03-26T08:33:06ZTangent unit-vector fields: nonabelian homotopy invariants and the Dirichlet energy Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:011d7437-583a-4972-917e-88921ce8f23aMathematical Institute - ePrints2009Majumdar, ARobbins, JZyskin, MLet O be a closed geodesic polygon in S2 . Maps from O into S 2 are said to satisfy tangent boundary conditions if the edges of O are mapped into the geodesics which contain them. Taking O to be an octant of S2 , we evaluate the infimum Dirichlet energy, E(H), for continuous tangent maps of arbitrary homotopy type H. The expression for E(H) involves a topological invariant – the spelling length – associated with the (nonabelian) fundamental group of the n-times punctured two-sphere, π1(S 2 −{s1 , . . . , sn },∗). These results have applications for the theoretical modelling of nematic liquid crystal devices.
spellingShingle Majumdar, A
Robbins, J
Zyskin, M
Tangent unit-vector fields: nonabelian homotopy invariants and the Dirichlet energy
title Tangent unit-vector fields: nonabelian homotopy invariants and the Dirichlet energy
title_full Tangent unit-vector fields: nonabelian homotopy invariants and the Dirichlet energy
title_fullStr Tangent unit-vector fields: nonabelian homotopy invariants and the Dirichlet energy
title_full_unstemmed Tangent unit-vector fields: nonabelian homotopy invariants and the Dirichlet energy
title_short Tangent unit-vector fields: nonabelian homotopy invariants and the Dirichlet energy
title_sort tangent unit vector fields nonabelian homotopy invariants and the dirichlet energy
work_keys_str_mv AT majumdara tangentunitvectorfieldsnonabelianhomotopyinvariantsandthedirichletenergy
AT robbinsj tangentunitvectorfieldsnonabelianhomotopyinvariantsandthedirichletenergy
AT zyskinm tangentunitvectorfieldsnonabelianhomotopyinvariantsandthedirichletenergy