ON THE DENSITY OF THE WARD ANSATZE IN THE SPACE OF ANTI-SELF-DUAL YANG-MILLS SOLUTIONS
A general patching matrix P for the twistor construction of antiself-dual Yang-Mills fields is approximated by a terminating Laurent series. The approximate patching matrix P(m) is triangularized (so that it becomes one of the Ward ansätze) and the associated Riemann-Hilbert problem is solved, there...
Hauptverfasser: | Ivancovich, J, Mason, L, Newman, E |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
Springer-Verlag
1990
|
Ähnliche Einträge
-
A simple solution generation method for anti-self-dual Yang-Mills equations
von: Mason, L, et al.
Veröffentlicht: (1988) -
Bäcklund transformations for the anti-self-dual Yang-Mills equations
von: Mason, L, et al.
Veröffentlicht: (1988) -
Global anti-self-dual Yang-Mills fields in split signature and their
scattering
von: Mason, L
Veröffentlicht: (2005) -
New soliton solutions of anti-self-dual Yang-Mills equations
von: Masashi Hamanaka, et al.
Veröffentlicht: (2020-10-01) -
Self-Dual and Anti-Self-Dual Solutions of Discrete Yang-Mills Equations on a Double Complex
von: VOLODYMYR SUSHCH
Veröffentlicht: (2010-01-01)