Learning to segment key clinical anatomical structures in fetal neurosonography informed by a region-based descriptor
We present a general framework for automatic segmentation of fetal brain structures in ultrasound images inspired by recent advances in machine learning. The approach is based on a region descriptor that characterizes the shape and local intensity context of different neurological structures without...
Auteurs principaux: | Huang, R, Namburete, A, Noble, J |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Society of Photo-optical Instrumentation Engineers
2018
|
Documents similaires
-
Data for paper 'Learning to segment key clinical anatomical structures in fetal neurosonography informed by a region-based descriptor'
par: Huang, R, et autres
Publié: (2018) -
VP-Nets : Efficient automatic localization of key brain structures in 3D fetal neurosonography
par: Huang, R, et autres
Publié: (2018) -
Robust regression of brain maturation from 3D fetal neurosonography using CRNs
par: Namburete, A, et autres
Publié: (2017) -
BEAN: brain extraction and alignment network for 3D fetal neurosonography
par: Moser, F, et autres
Publié: (2022) -
Registration of 3D fetal neurosonography and MRI.
par: Kuklisova-Murgasova, M, et autres
Publié: (2013)