Learning to segment key clinical anatomical structures in fetal neurosonography informed by a region-based descriptor
We present a general framework for automatic segmentation of fetal brain structures in ultrasound images inspired by recent advances in machine learning. The approach is based on a region descriptor that characterizes the shape and local intensity context of different neurological structures without...
Główni autorzy: | Huang, R, Namburete, A, Noble, J |
---|---|
Format: | Journal article |
Język: | English |
Wydane: |
Society of Photo-optical Instrumentation Engineers
2018
|
Podobne zapisy
-
Data for paper 'Learning to segment key clinical anatomical structures in fetal neurosonography informed by a region-based descriptor'
od: Huang, R, i wsp.
Wydane: (2018) -
Robust regression of brain maturation from 3D fetal neurosonography using CRNs
od: Namburete, A, i wsp.
Wydane: (2017) -
BEAN: brain extraction and alignment network for 3D fetal neurosonography
od: Moser, F, i wsp.
Wydane: (2022) -
VP-Nets : Efficient automatic localization of key brain structures in 3D fetal neurosonography
od: Huang, R, i wsp.
Wydane: (2018) -
BEAN: Brain Extraction and Alignment Network for 3D Fetal Neurosonography
od: Felipe Moser, i wsp.
Wydane: (2022-09-01)