Deep spectral methods: a surprisingly strong baseline for unsupervised semantic segmentation and localization
Unsupervised localization and segmentation are long-standing computer vision challenges that involve decom-posing an image into semantically meaningful segments without any labeled data. These tasks are particularly interesting in an unsupervised setting due to the difficulty and cost of obtaining d...
主要な著者: | Melas-Kyriazi, L, Rupprecht, C, Laina, I, Vedaldi, A |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
IEEE
2022
|
類似資料
-
Finding an unsupervised image segmenter in each of your deep generative models
著者:: Melas-Kyriazi, L, 等
出版事項: (2021) -
RealFusion: 360 reconstruction of any object from a single image
著者:: Melas-Kyriazi, L, 等
出版事項: (2023) -
Unsupervised multi-object segmentation by predicting probable motion patterns
著者:: Karazija, L, 等
出版事項: (2022) -
Guess what moves: unsupervised video and image segmentation by anticipating motion
著者:: Choudhury, S, 等
出版事項: (2022) -
Unsupervised part discovery from contrastive reconstruction
著者:: Choudhury, S, 等
出版事項: (2021)