On-chip learning with analogue VLSI neural networks.

Results from simulations of weight perturbation as an on-chip learning scheme for analogue VLSI neural networks are presented. The limitations of analogue hardware are modelled as realistically as possible. Thus synaptic weight precision is defined according to the smallest change in the weight sett...

Full description

Bibliographic Details
Main Authors: Tarassenko, L, Tombs, J, Cairns, G
Format: Journal article
Language:English
Published: 1993
Description
Summary:Results from simulations of weight perturbation as an on-chip learning scheme for analogue VLSI neural networks are presented. The limitations of analogue hardware are modelled as realistically as possible. Thus synaptic weight precision is defined according to the smallest change in the weight setting voltage which gives a measurable change at the output of the corresponding neuron. Tests are carried out on a hard classification problem constructed from mobile robot navigation data. The simulations show that the degradation in classification performance on a 500-pattern test set caused by the introduction of realistic hardware constraints is acceptable: with 8-bit weights, updated probabilistically and with a simplified output error criterion, the error rate increases by no more than 7% when compared with weight perturbation implemented with full 32-bit precision.