Asymptotic behaviour of solutions to abstract logistic equations.
We analyze the asymptotic behaviour of solutions of the abstract differential equation u'(t)=Au(t)-F(u(t))u(t)+f. Our results are applicable to models of structured population dynamics in which the state space consists of population densities with respect to the structure variables. In the equa...
Hlavní autoři: | Dyson, J, Villella-Bressan, R, Webb, G |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2007
|
Podobné jednotky
-
EXISTENCE AND ASYMPTOTIC PROPERTIES OF SOLUTIONS OF A NONLOCAL EVOLUTION EQUATION MODELING CELL-CELL ADHESION
Autor: Dyson, J, a další
Vydáno: (2010) -
Hypercyclicity of solutions of a transport equation with delays
Autor: Dyson, J, a další
Vydáno: (1997) -
Global Existence and Boundedness of Solutions to a Model of Chemotaxis
Autor: Dyson, J, a další
Vydáno: (2008) -
REMARKS ON ASYMPTOTIC-BEHAVIOR OF A NONAUTONOMOUS, NONLINEAR FUNCTIONAL-DIFFERENTIAL EQUATION
Autor: Dyson, J, a další
Vydáno: (1977) -
A semilinear transport equation with delays
Autor: Janet Dyson, a další
Vydáno: (2003-01-01)