"Indirect" high-resolution transmission electron microscopy: aberration measurement and wavefunction reconstruction.

Improvements in instrumentation and image processing techniques mean that methods involving reconstruction of focal or beam-tilt series of images are now realizing the promise they have long offered. This indirect approach recovers both the phase and the modulus of the specimen exit plane wave funct...

Full description

Bibliographic Details
Main Authors: Kirkland, A, Meyer, R
Format: Journal article
Language:English
Published: 2004
Description
Summary:Improvements in instrumentation and image processing techniques mean that methods involving reconstruction of focal or beam-tilt series of images are now realizing the promise they have long offered. This indirect approach recovers both the phase and the modulus of the specimen exit plane wave function and can extend the interpretable resolution. However, such reconstructions require the a posteriori determination of the objective lens aberrations, including the actual beam tilt, defocus, and twofold and threefold astigmatism. In this review, we outline the theory behind exit plane wavefunction reconstruction and describe methods for the accurate and automated determination of the required coefficients of the wave aberration function. Finally, recent applications of indirect reconstruction in the structural analysis of complex oxides are presented.