Rational approximation of $x^n$

Let $E_{kk}^{(n)}$ denote the minimax (i.e., best supremum norm) error in approximation of $x^n$ on $[\kern .3pt 0,1]$ by rational functions of type $(k,k)$ with $k

Bibliographic Details
Main Authors: Nakatsukasa, Y, Trefethen, L
Format: Journal article
Published: American Mathematical Society 2018
_version_ 1797050729337192448
author Nakatsukasa, Y
Trefethen, L
author_facet Nakatsukasa, Y
Trefethen, L
author_sort Nakatsukasa, Y
collection OXFORD
description Let $E_{kk}^{(n)}$ denote the minimax (i.e., best supremum norm) error in approximation of $x^n$ on $[\kern .3pt 0,1]$ by rational functions of type $(k,k)$ with $k
first_indexed 2024-03-06T18:09:30Z
format Journal article
id oxford-uuid:0283cc46-753c-4404-a84e-b60408841df3
institution University of Oxford
last_indexed 2024-03-06T18:09:30Z
publishDate 2018
publisher American Mathematical Society
record_format dspace
spelling oxford-uuid:0283cc46-753c-4404-a84e-b60408841df32022-03-26T08:41:10ZRational approximation of $x^n$Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:0283cc46-753c-4404-a84e-b60408841df3Symplectic Elements at OxfordAmerican Mathematical Society2018Nakatsukasa, YTrefethen, LLet $E_{kk}^{(n)}$ denote the minimax (i.e., best supremum norm) error in approximation of $x^n$ on $[\kern .3pt 0,1]$ by rational functions of type $(k,k)$ with $k
spellingShingle Nakatsukasa, Y
Trefethen, L
Rational approximation of $x^n$
title Rational approximation of $x^n$
title_full Rational approximation of $x^n$
title_fullStr Rational approximation of $x^n$
title_full_unstemmed Rational approximation of $x^n$
title_short Rational approximation of $x^n$
title_sort rational approximation of x n
work_keys_str_mv AT nakatsukasay rationalapproximationofxn
AT trefethenl rationalapproximationofxn