Rational approximation of $x^n$
Let $E_{kk}^{(n)}$ denote the minimax (i.e., best supremum norm) error in approximation of $x^n$ on $[\kern .3pt 0,1]$ by rational functions of type $(k,k)$ with $k
Main Authors: | , |
---|---|
Format: | Journal article |
Published: |
American Mathematical Society
2018
|
_version_ | 1797050729337192448 |
---|---|
author | Nakatsukasa, Y Trefethen, L |
author_facet | Nakatsukasa, Y Trefethen, L |
author_sort | Nakatsukasa, Y |
collection | OXFORD |
description | Let $E_{kk}^{(n)}$ denote the minimax (i.e., best supremum norm) error in approximation of $x^n$ on $[\kern .3pt 0,1]$ by rational functions of type $(k,k)$ with $k |
first_indexed | 2024-03-06T18:09:30Z |
format | Journal article |
id | oxford-uuid:0283cc46-753c-4404-a84e-b60408841df3 |
institution | University of Oxford |
last_indexed | 2024-03-06T18:09:30Z |
publishDate | 2018 |
publisher | American Mathematical Society |
record_format | dspace |
spelling | oxford-uuid:0283cc46-753c-4404-a84e-b60408841df32022-03-26T08:41:10ZRational approximation of $x^n$Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:0283cc46-753c-4404-a84e-b60408841df3Symplectic Elements at OxfordAmerican Mathematical Society2018Nakatsukasa, YTrefethen, LLet $E_{kk}^{(n)}$ denote the minimax (i.e., best supremum norm) error in approximation of $x^n$ on $[\kern .3pt 0,1]$ by rational functions of type $(k,k)$ with $k |
spellingShingle | Nakatsukasa, Y Trefethen, L Rational approximation of $x^n$ |
title | Rational approximation of $x^n$ |
title_full | Rational approximation of $x^n$ |
title_fullStr | Rational approximation of $x^n$ |
title_full_unstemmed | Rational approximation of $x^n$ |
title_short | Rational approximation of $x^n$ |
title_sort | rational approximation of x n |
work_keys_str_mv | AT nakatsukasay rationalapproximationofxn AT trefethenl rationalapproximationofxn |