Neurological and humoral control of blood pressure

There is a relationship between arterial blood pressure, cardiac output and vascular resistance which can be described mathematically, and helps us to understand the short-term control of blood pressure in the terms of a hydraulic system. The sensors in this system are the arterial baroreceptors whi...

Full description

Bibliographic Details
Main Authors: O'Donohoe, P, Pandit, J
Format: Journal article
Language:English
Published: 2013
_version_ 1797050761821028352
author O'Donohoe, P
Pandit, J
author_facet O'Donohoe, P
Pandit, J
author_sort O'Donohoe, P
collection OXFORD
description There is a relationship between arterial blood pressure, cardiac output and vascular resistance which can be described mathematically, and helps us to understand the short-term control of blood pressure in the terms of a hydraulic system. The sensors in this system are the arterial baroreceptors which mediate changes in the hydraulic system though control of the autonomic nervous system, which in turn influences heart rate, inotropy and vascular tone. Altering the distribution of blood between the arterial and venous systems compensates for acute changes in total blood volume. The total blood volume is controlled predominantly by the kidney, with the renin-angiotensin-aldosterone system acting as both the 'sensor' of blood pressure/volume (via renin release in the juxtaglomerular apparatus) and the 'effector' of blood pressure/volume (via aldosterone secretion by the adrenal cortex). Overall control is shared; the baroreceptors being responsible for mediating short-term changes, and renal mechanisms determining the long-term control of blood pressure. These systems have to be adaptable in order to deal with physiological variation in the delivery of blood to tissues from rest to exercise, and with the large shifts in blood volume seen in acute haemorrhage. Pathophysiological changes in these systems lead to maladaptive responses, with systemic hypertension the most commonly seen. © 2013 Elsevier Ltd. All rights reserved.
first_indexed 2024-03-06T18:09:59Z
format Journal article
id oxford-uuid:02aeddf8-e5f2-4a4c-9609-e06445515cca
institution University of Oxford
language English
last_indexed 2024-03-06T18:09:59Z
publishDate 2013
record_format dspace
spelling oxford-uuid:02aeddf8-e5f2-4a4c-9609-e06445515cca2022-03-26T08:42:04ZNeurological and humoral control of blood pressureJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:02aeddf8-e5f2-4a4c-9609-e06445515ccaEnglishSymplectic Elements at Oxford2013O'Donohoe, PPandit, JThere is a relationship between arterial blood pressure, cardiac output and vascular resistance which can be described mathematically, and helps us to understand the short-term control of blood pressure in the terms of a hydraulic system. The sensors in this system are the arterial baroreceptors which mediate changes in the hydraulic system though control of the autonomic nervous system, which in turn influences heart rate, inotropy and vascular tone. Altering the distribution of blood between the arterial and venous systems compensates for acute changes in total blood volume. The total blood volume is controlled predominantly by the kidney, with the renin-angiotensin-aldosterone system acting as both the 'sensor' of blood pressure/volume (via renin release in the juxtaglomerular apparatus) and the 'effector' of blood pressure/volume (via aldosterone secretion by the adrenal cortex). Overall control is shared; the baroreceptors being responsible for mediating short-term changes, and renal mechanisms determining the long-term control of blood pressure. These systems have to be adaptable in order to deal with physiological variation in the delivery of blood to tissues from rest to exercise, and with the large shifts in blood volume seen in acute haemorrhage. Pathophysiological changes in these systems lead to maladaptive responses, with systemic hypertension the most commonly seen. © 2013 Elsevier Ltd. All rights reserved.
spellingShingle O'Donohoe, P
Pandit, J
Neurological and humoral control of blood pressure
title Neurological and humoral control of blood pressure
title_full Neurological and humoral control of blood pressure
title_fullStr Neurological and humoral control of blood pressure
title_full_unstemmed Neurological and humoral control of blood pressure
title_short Neurological and humoral control of blood pressure
title_sort neurological and humoral control of blood pressure
work_keys_str_mv AT odonohoep neurologicalandhumoralcontrolofbloodpressure
AT panditj neurologicalandhumoralcontrolofbloodpressure