Free and fragmenting filling length
The filling length of an edge-circuit \eta in the Cayley 2-complex of a finite presentation of a group is the least integer L such that there is a combinatorial null-homotopy of \eta down to a base point through loops of length at most L. We introduce similar notions in which the null-homotopy is no...
主要な著者: | Bridson, M, Riley, T |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2005
|
類似資料
-
Extrinsic versus intrinsic diameter for Riemannian filling-discs and van
Kampen diagrams
著者:: Bridson, M, 等
出版事項: (2005) -
Extrinsic versus intrinsic diameter for Riemannian filling-discs and van
Kampen diagrams
著者:: Bridson, M, 等
出版事項: (2009) -
Length functions, curvature, and the dimension of discrete groups
著者:: Bridson, M
出版事項: (2001) -
Polynomial Dehn functions and the length of asynchronously automatic structures
著者:: Bridson, M
出版事項: (2002) -
Profinite completions of free-by-free groups contain everything
著者:: Bridson, MR
出版事項: (2024)