Free and fragmenting filling length
The filling length of an edge-circuit \eta in the Cayley 2-complex of a finite presentation of a group is the least integer L such that there is a combinatorial null-homotopy of \eta down to a base point through loops of length at most L. We introduce similar notions in which the null-homotopy is no...
Huvudupphovsmän: | Bridson, M, Riley, T |
---|---|
Materialtyp: | Journal article |
Språk: | English |
Publicerad: |
2005
|
Liknande verk
Liknande verk
-
Extrinsic versus intrinsic diameter for Riemannian filling-discs and van
Kampen diagrams
av: Bridson, M, et al.
Publicerad: (2005) -
Extrinsic versus intrinsic diameter for Riemannian filling-discs and van
Kampen diagrams
av: Bridson, M, et al.
Publicerad: (2009) -
Length functions, curvature, and the dimension of discrete groups
av: Bridson, M
Publicerad: (2001) -
Polynomial Dehn functions and the length of asynchronously automatic structures
av: Bridson, M
Publicerad: (2002) -
Profinite completions of free-by-free groups contain everything
av: Bridson, MR
Publicerad: (2024)