Robustness of raman plasma amplifiers and their potential for attosecond pulse generation
Raman back-scatter from an under-dense plasma can be used to compress laser pulses, as shown by several previous experiments in the optical regime. A short seed pulse counter-propagates with a longer pump pulse and energy is transferred to the shorter pulse via stimulated Raman scattering. The robus...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Published: |
Elsevier
2017
|
Summary: | Raman back-scatter from an under-dense plasma can be used to compress laser pulses, as shown by several previous experiments in the optical regime. A short seed pulse counter-propagates with a longer pump pulse and energy is transferred to the shorter pulse via stimulated Raman scattering. The robustness of the scheme to non-ideal plasma density conditions is demonstrated through particle-in-cell simulations. The scale invariance of the scheme ensures that compression of XUV pulses from a free electron laser is also possible, as demonstrated by further simulations. The output is as short as 300 as, with energy typical of fourth generation sources. |
---|