Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation.
This paper proposes the use of variational Kalman filtering as an inference technique for adaptive classification in a brain computer interface (BCI). The proposed algorithm translates electroencephalogram segments adaptively into probabilities of cognitive states. It, thus, allows for nonstationari...
Main Authors: | Sykacek, P, Roberts, S, Stokes, M |
---|---|
Format: | Journal article |
Sprog: | English |
Udgivet: |
2004
|
Lignende værker
-
Adaptive classification by variational Kalman filtering
af: Sykacek, P, et al.
Udgivet: (2003) -
Probabilistic methods in BCI research.
af: Sykacek, P, et al.
Udgivet: (2003) -
An Adjoint-Based Adaptive Ensemble Kalman Filter
af: Song, Hajoon, et al.
Udgivet: (2014) -
Adaptive beamforming algorithm based on Simulated Kalman Filter
af: Kelvin Lazarus, Lazarus
Udgivet: (2017) -
Bayesian time series classification
af: Sykacek, P, et al.
Udgivet: (2002)