Learning to quantify uncertainty in off-target activity for CRISPR guide RNAs
CRISPR-based genome editing technologies have revolutionised the field of molecular biology, offering unprecedented opportunities for precise genetic manipulation. However, off-target effects remain a significant challenge, potentially leading to unintended consequences and limiting the applicabilit...
Huvudupphovsmän: | Ozden, F, Minary, P |
---|---|
Materialtyp: | Journal article |
Språk: | English |
Publicerad: |
Oxford University Press
2024
|
Liknande verk
Liknande verk
-
CRISPR-DBA: a deep learning framework for uncertainty quantification of CRISPR off-target activities
av: Cao, X, et al.
Publicerad: (2024) -
crisprSQL: a novel database platform for CRISPR/Cas off-target cleavage assays
av: Störtz, F, et al.
Publicerad: (2020) -
piCRISPR: physically informed deep learning models for CRISPR/Cas9 off-target cleavage prediction
av: Störtz, F, et al.
Publicerad: (2023) -
Comprehensive computational analysis of epigenetic descriptors affecting CRISPR-Cas9 off-target activity
av: Mak, JK, et al.
Publicerad: (2022) -
piCRISPR: Physically informed deep learning models for CRISPR/Cas9 off-target cleavage prediction
av: Florian Störtz, et al.
Publicerad: (2023-12-01)