Learning to quantify uncertainty in off-target activity for CRISPR guide RNAs
CRISPR-based genome editing technologies have revolutionised the field of molecular biology, offering unprecedented opportunities for precise genetic manipulation. However, off-target effects remain a significant challenge, potentially leading to unintended consequences and limiting the applicabilit...
Hlavní autoři: | Ozden, F, Minary, P |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Oxford University Press
2024
|
Podobné jednotky
-
CRISPR-DBA: a deep learning framework for uncertainty quantification of CRISPR off-target activities
Autor: Cao, X, a další
Vydáno: (2024) -
crisprSQL: a novel database platform for CRISPR/Cas off-target cleavage assays
Autor: Störtz, F, a další
Vydáno: (2020) -
piCRISPR: physically informed deep learning models for CRISPR/Cas9 off-target cleavage prediction
Autor: Störtz, F, a další
Vydáno: (2023) -
Comprehensive computational analysis of epigenetic descriptors affecting CRISPR-Cas9 off-target activity
Autor: Mak, JK, a další
Vydáno: (2022) -
piCRISPR: Physically informed deep learning models for CRISPR/Cas9 off-target cleavage prediction
Autor: Florian Störtz, a další
Vydáno: (2023-12-01)