Mapping the IkappaB kinase beta (IKKbeta)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKbeta-mediated activation of nuclear factor kappaB.
The IκB kinase (IKK) complex regulates activation of NF-κB, a critical transcription factor in mediating inflammatory and immune responses. Not surprisingly, therefore, many viruses seek to inhibit NF-κB activation. The vaccinia virus B14 protein contributes to virus virulence by binding to the IKKβ...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2011
|
_version_ | 1826257212702457856 |
---|---|
author | Benfield, C Mansur, D McCoy, L Ferguson, B Bahar, M Oldring, A Grimes, J Stuart, D Graham, S Smith, G |
author_facet | Benfield, C Mansur, D McCoy, L Ferguson, B Bahar, M Oldring, A Grimes, J Stuart, D Graham, S Smith, G |
author_sort | Benfield, C |
collection | OXFORD |
description | The IκB kinase (IKK) complex regulates activation of NF-κB, a critical transcription factor in mediating inflammatory and immune responses. Not surprisingly, therefore, many viruses seek to inhibit NF-κB activation. The vaccinia virus B14 protein contributes to virus virulence by binding to the IKKβ subunit of the IKK complex and preventing NF-κB activation in response to pro-inflammatory stimuli. Previous crystallographic studies showed that the B14 protein has a Bcl-2-like fold and forms homodimers in the crystal. However, multi-angle light scattering indicated that B14 is in monomer-dimer equilibrium in solution. This transient self-association suggested that the hydrophobic dimerization interface of B14 might also mediate its interaction with IKKβ, and this was investigated by introducing amino acid substitutions on the dimer interface. One mutant (Y35E) was entirely monomeric but still co-immunoprecipitated with IKKβ and blocked both NF-κB nuclear translocation and NF-κB-dependent gene expression. Therefore, B14 homodimerization is nonessential for binding and inhibition of IKKβ. In contrast, a second monomeric mutant (F130K) neither bound IKKβ nor inhibited NF-κB-dependent gene expression, demonstrating that this residue is required for the B14-IKKβ interaction. Thus, the dimerization and IKKβ-binding interfaces overlap and lie on a surface used for protein-protein interactions in many viral and cellular Bcl-2-like proteins. |
first_indexed | 2024-03-06T18:14:34Z |
format | Journal article |
id | oxford-uuid:042c4f5d-00dd-43f5-8562-9fe581e54c03 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T18:14:34Z |
publishDate | 2011 |
record_format | dspace |
spelling | oxford-uuid:042c4f5d-00dd-43f5-8562-9fe581e54c032022-03-26T08:50:22ZMapping the IkappaB kinase beta (IKKbeta)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKbeta-mediated activation of nuclear factor kappaB.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:042c4f5d-00dd-43f5-8562-9fe581e54c03EnglishSymplectic Elements at Oxford2011Benfield, CMansur, DMcCoy, LFerguson, BBahar, MOldring, AGrimes, JStuart, DGraham, SSmith, GThe IκB kinase (IKK) complex regulates activation of NF-κB, a critical transcription factor in mediating inflammatory and immune responses. Not surprisingly, therefore, many viruses seek to inhibit NF-κB activation. The vaccinia virus B14 protein contributes to virus virulence by binding to the IKKβ subunit of the IKK complex and preventing NF-κB activation in response to pro-inflammatory stimuli. Previous crystallographic studies showed that the B14 protein has a Bcl-2-like fold and forms homodimers in the crystal. However, multi-angle light scattering indicated that B14 is in monomer-dimer equilibrium in solution. This transient self-association suggested that the hydrophobic dimerization interface of B14 might also mediate its interaction with IKKβ, and this was investigated by introducing amino acid substitutions on the dimer interface. One mutant (Y35E) was entirely monomeric but still co-immunoprecipitated with IKKβ and blocked both NF-κB nuclear translocation and NF-κB-dependent gene expression. Therefore, B14 homodimerization is nonessential for binding and inhibition of IKKβ. In contrast, a second monomeric mutant (F130K) neither bound IKKβ nor inhibited NF-κB-dependent gene expression, demonstrating that this residue is required for the B14-IKKβ interaction. Thus, the dimerization and IKKβ-binding interfaces overlap and lie on a surface used for protein-protein interactions in many viral and cellular Bcl-2-like proteins. |
spellingShingle | Benfield, C Mansur, D McCoy, L Ferguson, B Bahar, M Oldring, A Grimes, J Stuart, D Graham, S Smith, G Mapping the IkappaB kinase beta (IKKbeta)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKbeta-mediated activation of nuclear factor kappaB. |
title | Mapping the IkappaB kinase beta (IKKbeta)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKbeta-mediated activation of nuclear factor kappaB. |
title_full | Mapping the IkappaB kinase beta (IKKbeta)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKbeta-mediated activation of nuclear factor kappaB. |
title_fullStr | Mapping the IkappaB kinase beta (IKKbeta)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKbeta-mediated activation of nuclear factor kappaB. |
title_full_unstemmed | Mapping the IkappaB kinase beta (IKKbeta)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKbeta-mediated activation of nuclear factor kappaB. |
title_short | Mapping the IkappaB kinase beta (IKKbeta)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKbeta-mediated activation of nuclear factor kappaB. |
title_sort | mapping the ikappab kinase beta ikkbeta binding interface of the b14 protein a vaccinia virus inhibitor of ikkbeta mediated activation of nuclear factor kappab |
work_keys_str_mv | AT benfieldc mappingtheikappabkinasebetaikkbetabindinginterfaceoftheb14proteinavacciniavirusinhibitorofikkbetamediatedactivationofnuclearfactorkappab AT mansurd mappingtheikappabkinasebetaikkbetabindinginterfaceoftheb14proteinavacciniavirusinhibitorofikkbetamediatedactivationofnuclearfactorkappab AT mccoyl mappingtheikappabkinasebetaikkbetabindinginterfaceoftheb14proteinavacciniavirusinhibitorofikkbetamediatedactivationofnuclearfactorkappab AT fergusonb mappingtheikappabkinasebetaikkbetabindinginterfaceoftheb14proteinavacciniavirusinhibitorofikkbetamediatedactivationofnuclearfactorkappab AT baharm mappingtheikappabkinasebetaikkbetabindinginterfaceoftheb14proteinavacciniavirusinhibitorofikkbetamediatedactivationofnuclearfactorkappab AT oldringa mappingtheikappabkinasebetaikkbetabindinginterfaceoftheb14proteinavacciniavirusinhibitorofikkbetamediatedactivationofnuclearfactorkappab AT grimesj mappingtheikappabkinasebetaikkbetabindinginterfaceoftheb14proteinavacciniavirusinhibitorofikkbetamediatedactivationofnuclearfactorkappab AT stuartd mappingtheikappabkinasebetaikkbetabindinginterfaceoftheb14proteinavacciniavirusinhibitorofikkbetamediatedactivationofnuclearfactorkappab AT grahams mappingtheikappabkinasebetaikkbetabindinginterfaceoftheb14proteinavacciniavirusinhibitorofikkbetamediatedactivationofnuclearfactorkappab AT smithg mappingtheikappabkinasebetaikkbetabindinginterfaceoftheb14proteinavacciniavirusinhibitorofikkbetamediatedactivationofnuclearfactorkappab |