Evaluation of single crystal elastic stiffness coefficients of a nickel-based superalloy by electron backscatter diffraction and nanoindentation

A new methodology was developed in order to obtain single crystal elastic coefficients from nanoindentation experiments on a cubic polycrystal. The method consists of locating grains that are oriented with a 〈100〉, 〈110〉 or 〈111〉 direction near-parallel to the sample surface normal by means of elect...

Full description

Bibliographic Details
Main Authors: Everaerts, J, Papadaki, C, Li, W, Korsunsky, A
Format: Journal article
Published: Elsevier 2019
_version_ 1797051115121934336
author Everaerts, J
Papadaki, C
Li, W
Korsunsky, A
author_facet Everaerts, J
Papadaki, C
Li, W
Korsunsky, A
author_sort Everaerts, J
collection OXFORD
description A new methodology was developed in order to obtain single crystal elastic coefficients from nanoindentation experiments on a cubic polycrystal. The method consists of locating grains that are oriented with a 〈100〉, 〈110〉 or 〈111〉 direction near-parallel to the sample surface normal by means of electron backscattering diffraction. The reduced Young's moduli of the selected grains are then determined by nanoindentation. Finally, the average reduced modulus and Euler angles of each grain are used as input for a least-squares optimisation to calculate the three independent stiffness coefficients, which can then be used to obtain Young's modulus in any crystallographic direction. This technique, which was validated on a single crystal nickel-based superalloy (CMSX-4) with known elastic coefficients, was applied to a polycrystalline nickel-based superalloy (RR1000) with unknown elastic coefficients, resulting in a correct prediction of the general trend of increasing Young's modulus from the 〈100〉 to the 〈110〉 to the 〈111〉 direction. The stiffness coefficients C11, C12 and C44 were found to be 282, 121 and 108 GPa, respectively. These results, which are representative of the γ/γ’ structure as a whole, are in good agreement with literature data on similar superalloys. By constructing a visual representation of the elastic anisotropy based on the crystallographic factor, it is shown that the observed anisotropy is lower compared to other alloys.
first_indexed 2024-03-06T18:15:17Z
format Journal article
id oxford-uuid:0467486b-e488-4251-a128-b16a47c35d40
institution University of Oxford
last_indexed 2024-03-06T18:15:17Z
publishDate 2019
publisher Elsevier
record_format dspace
spelling oxford-uuid:0467486b-e488-4251-a128-b16a47c35d402022-03-26T08:51:36ZEvaluation of single crystal elastic stiffness coefficients of a nickel-based superalloy by electron backscatter diffraction and nanoindentationJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:0467486b-e488-4251-a128-b16a47c35d40Symplectic Elements at OxfordElsevier2019Everaerts, JPapadaki, CLi, WKorsunsky, AA new methodology was developed in order to obtain single crystal elastic coefficients from nanoindentation experiments on a cubic polycrystal. The method consists of locating grains that are oriented with a 〈100〉, 〈110〉 or 〈111〉 direction near-parallel to the sample surface normal by means of electron backscattering diffraction. The reduced Young's moduli of the selected grains are then determined by nanoindentation. Finally, the average reduced modulus and Euler angles of each grain are used as input for a least-squares optimisation to calculate the three independent stiffness coefficients, which can then be used to obtain Young's modulus in any crystallographic direction. This technique, which was validated on a single crystal nickel-based superalloy (CMSX-4) with known elastic coefficients, was applied to a polycrystalline nickel-based superalloy (RR1000) with unknown elastic coefficients, resulting in a correct prediction of the general trend of increasing Young's modulus from the 〈100〉 to the 〈110〉 to the 〈111〉 direction. The stiffness coefficients C11, C12 and C44 were found to be 282, 121 and 108 GPa, respectively. These results, which are representative of the γ/γ’ structure as a whole, are in good agreement with literature data on similar superalloys. By constructing a visual representation of the elastic anisotropy based on the crystallographic factor, it is shown that the observed anisotropy is lower compared to other alloys.
spellingShingle Everaerts, J
Papadaki, C
Li, W
Korsunsky, A
Evaluation of single crystal elastic stiffness coefficients of a nickel-based superalloy by electron backscatter diffraction and nanoindentation
title Evaluation of single crystal elastic stiffness coefficients of a nickel-based superalloy by electron backscatter diffraction and nanoindentation
title_full Evaluation of single crystal elastic stiffness coefficients of a nickel-based superalloy by electron backscatter diffraction and nanoindentation
title_fullStr Evaluation of single crystal elastic stiffness coefficients of a nickel-based superalloy by electron backscatter diffraction and nanoindentation
title_full_unstemmed Evaluation of single crystal elastic stiffness coefficients of a nickel-based superalloy by electron backscatter diffraction and nanoindentation
title_short Evaluation of single crystal elastic stiffness coefficients of a nickel-based superalloy by electron backscatter diffraction and nanoindentation
title_sort evaluation of single crystal elastic stiffness coefficients of a nickel based superalloy by electron backscatter diffraction and nanoindentation
work_keys_str_mv AT everaertsj evaluationofsinglecrystalelasticstiffnesscoefficientsofanickelbasedsuperalloybyelectronbackscatterdiffractionandnanoindentation
AT papadakic evaluationofsinglecrystalelasticstiffnesscoefficientsofanickelbasedsuperalloybyelectronbackscatterdiffractionandnanoindentation
AT liw evaluationofsinglecrystalelasticstiffnesscoefficientsofanickelbasedsuperalloybyelectronbackscatterdiffractionandnanoindentation
AT korsunskya evaluationofsinglecrystalelasticstiffnesscoefficientsofanickelbasedsuperalloybyelectronbackscatterdiffractionandnanoindentation