Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction
Diffusion MRI data can be affected by hardware and subject-related artefacts that can adversely affect downstream analyses. Therefore, automated quality control (QC) is of great importance, especially in large population studies where visual QC is not practical. In this work, we introduce an automat...
Главные авторы: | Bastiani, M, Cottaar, M, Fitzgibbon, S, Suri, S, Alfaro-Almagro, F, Sotiropoulos, S, Jbabdi, S, Andersson, J |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Elsevier
2018
|
Схожие документы
-
Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images
по: Andersson, J, и др.
Опубликовано: (2016) -
Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement
по: Andersson, J, и др.
Опубликовано: (2017) -
Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project
по: Bastiani, M, и др.
Опубликовано: (2018) -
Joint modelling of diffusion MRI and microscopy
по: Howard, A, и др.
Опубликовано: (2019) -
Modelling fibre fanning in diffusion-weighted MRI.
по: Sotiropoulos, SN, и др.
Опубликовано: (2012)