Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction
Diffusion MRI data can be affected by hardware and subject-related artefacts that can adversely affect downstream analyses. Therefore, automated quality control (QC) is of great importance, especially in large population studies where visual QC is not practical. In this work, we introduce an automat...
Үндсэн зохиолчид: | Bastiani, M, Cottaar, M, Fitzgibbon, S, Suri, S, Alfaro-Almagro, F, Sotiropoulos, S, Jbabdi, S, Andersson, J |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
Elsevier
2018
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images
-н: Andersson, J, зэрэг
Хэвлэсэн: (2016) -
Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement
-н: Andersson, J, зэрэг
Хэвлэсэн: (2017) -
Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project
-н: Bastiani, M, зэрэг
Хэвлэсэн: (2018) -
Joint modelling of diffusion MRI and microscopy
-н: Howard, A, зэрэг
Хэвлэсэн: (2019) -
Modelling fibre fanning in diffusion-weighted MRI.
-н: Sotiropoulos, SN, зэрэг
Хэвлэсэн: (2012)