Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction
Diffusion MRI data can be affected by hardware and subject-related artefacts that can adversely affect downstream analyses. Therefore, automated quality control (QC) is of great importance, especially in large population studies where visual QC is not practical. In this work, we introduce an automat...
Asıl Yazarlar: | Bastiani, M, Cottaar, M, Fitzgibbon, S, Suri, S, Alfaro-Almagro, F, Sotiropoulos, S, Jbabdi, S, Andersson, J |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Elsevier
2018
|
Benzer Materyaller
-
Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images
Yazar:: Andersson, J, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement
Yazar:: Andersson, J, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project
Yazar:: Bastiani, M, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
Joint modelling of diffusion MRI and microscopy
Yazar:: Howard, A, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Modelling fibre fanning in diffusion-weighted MRI.
Yazar:: Sotiropoulos, SN, ve diğerleri
Baskı/Yayın Bilgisi: (2012)