Solving xz=y^2 in certain subsets of finite groups
Suppose that G is a finite group and A € G has no non-trivial solutions to xz = y2. We shall show that |A| = |G|/(loglog |G|)Ω(1).
Autor principal: | Sanders, T |
---|---|
Formato: | Journal article |
Publicado em: |
Oxford University Press
2017
|
Registros relacionados
-
Rainbow Connection on Amal(Fn,xz,m) Graphs and Amal(On,xz,m) Graphs
por: Muhammad Usaid Hudloir, et al.
Publicado em: (2024-10-01) -
FREQUENCY ANALISYS OF RADIAL VELOCITIES VARIATIONS OF XZ CYG
por: S. V. Vasilyeva
Publicado em: (2017-04-01) -
Rational subsets of finite groups
por: Roger Alperin
Publicado em: (2014-06-01) -
Conjugacy of Finite Subsets in Hyperbolic Groups.
por: Bridson, M, et al.
Publicado em: (2005) -
Stable Coronal X-Ray Emission over 20 yr of XZ Tau
por: Steven M. Silverberg, et al.
Publicado em: (2023-01-01)