When the genome bluffs: a tandem duplication event during generation of a novel Agmo knockout mouse model fools routine genotyping
Background Genome editing in mice using either classical approaches like homologous recombination or CRISPR/Cas9 has been reported to harbor off target effects (insertion/deletion, frame shifts or gene segment duplications) that lead to mutations not only in close proximity to the target site but al...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
BioMed Central
2021
|
_version_ | 1797051388526592000 |
---|---|
author | Sailer, S Coassin, S Lackner, K Fischer, C McNeill, E Streiter, G Kremser, C Maglione, M Green, CM Moralli, D Moschen, AR Keller, MA Golderer, G Werner-Felmayer, G Tegeder, I Channon, KM Davies, B Werner, ER Watschinger, K |
author_facet | Sailer, S Coassin, S Lackner, K Fischer, C McNeill, E Streiter, G Kremser, C Maglione, M Green, CM Moralli, D Moschen, AR Keller, MA Golderer, G Werner-Felmayer, G Tegeder, I Channon, KM Davies, B Werner, ER Watschinger, K |
author_sort | Sailer, S |
collection | OXFORD |
description | Background
Genome editing in mice using either classical approaches like homologous recombination or CRISPR/Cas9 has been reported to harbor off target effects (insertion/deletion, frame shifts or gene segment duplications) that lead to mutations not only in close proximity to the target site but also outside. Only the genomes of few engineered mouse strains have been sequenced. Since the role of the ether-lipid cleaving enzyme alkylglycerol monooxygenase (AGMO) in physiology and pathophysiology remains enigmatic, we created a knockout mouse model for AGMO using EUCOMM stem cells but unforeseen genotyping issues that did not agree with Mendelian distribution and enzyme activity data prompted an in-depth genomic validation of the mouse model.
Results
We report a gene segment tandem duplication event that occurred during the generation of an Agmo knockout-first allele by homologous recombination. Only low homology was seen between the breakpoints. While a single copy of the recombinant 18 kb cassette was integrated correctly around exon 2 of the Agmo gene, whole genome nanopore sequencing revealed a 94 kb duplication in the Agmo locus that contains Agmo wild-type exons 1–3. The duplication fooled genotyping by routine PCR, but could be resolved using qPCR-based genotyping, targeted locus amplification sequencing and nanopore sequencing. Despite this event, this Agmo knockout mouse model lacks AGMO enzyme activity and can therefore be used to study its physiological role.
Conclusions
A duplication event occurred at the exact locus of the homologous recombination and was not detected by conventional quality control filters such as FISH or long-range PCR over the recombination sites. Nanopore sequencing provides a cost convenient method to detect such underrated off-target effects, suggesting its use for additional quality assessment of gene editing in mice and also other model organisms.
|
first_indexed | 2024-03-06T18:18:50Z |
format | Journal article |
id | oxford-uuid:05929605-0806-450c-abaf-085d4a4ce6a0 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T18:18:50Z |
publishDate | 2021 |
publisher | BioMed Central |
record_format | dspace |
spelling | oxford-uuid:05929605-0806-450c-abaf-085d4a4ce6a02022-03-26T08:57:56ZWhen the genome bluffs: a tandem duplication event during generation of a novel Agmo knockout mouse model fools routine genotypingJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:05929605-0806-450c-abaf-085d4a4ce6a0EnglishSymplectic ElementsBioMed Central2021Sailer, SCoassin, SLackner, KFischer, CMcNeill, EStreiter, GKremser, CMaglione, MGreen, CMMoralli, DMoschen, ARKeller, MAGolderer, GWerner-Felmayer, GTegeder, IChannon, KMDavies, BWerner, ERWatschinger, KBackground Genome editing in mice using either classical approaches like homologous recombination or CRISPR/Cas9 has been reported to harbor off target effects (insertion/deletion, frame shifts or gene segment duplications) that lead to mutations not only in close proximity to the target site but also outside. Only the genomes of few engineered mouse strains have been sequenced. Since the role of the ether-lipid cleaving enzyme alkylglycerol monooxygenase (AGMO) in physiology and pathophysiology remains enigmatic, we created a knockout mouse model for AGMO using EUCOMM stem cells but unforeseen genotyping issues that did not agree with Mendelian distribution and enzyme activity data prompted an in-depth genomic validation of the mouse model. Results We report a gene segment tandem duplication event that occurred during the generation of an Agmo knockout-first allele by homologous recombination. Only low homology was seen between the breakpoints. While a single copy of the recombinant 18 kb cassette was integrated correctly around exon 2 of the Agmo gene, whole genome nanopore sequencing revealed a 94 kb duplication in the Agmo locus that contains Agmo wild-type exons 1–3. The duplication fooled genotyping by routine PCR, but could be resolved using qPCR-based genotyping, targeted locus amplification sequencing and nanopore sequencing. Despite this event, this Agmo knockout mouse model lacks AGMO enzyme activity and can therefore be used to study its physiological role. Conclusions A duplication event occurred at the exact locus of the homologous recombination and was not detected by conventional quality control filters such as FISH or long-range PCR over the recombination sites. Nanopore sequencing provides a cost convenient method to detect such underrated off-target effects, suggesting its use for additional quality assessment of gene editing in mice and also other model organisms. |
spellingShingle | Sailer, S Coassin, S Lackner, K Fischer, C McNeill, E Streiter, G Kremser, C Maglione, M Green, CM Moralli, D Moschen, AR Keller, MA Golderer, G Werner-Felmayer, G Tegeder, I Channon, KM Davies, B Werner, ER Watschinger, K When the genome bluffs: a tandem duplication event during generation of a novel Agmo knockout mouse model fools routine genotyping |
title | When the genome bluffs: a tandem duplication event during generation of a novel Agmo knockout mouse model fools routine genotyping |
title_full | When the genome bluffs: a tandem duplication event during generation of a novel Agmo knockout mouse model fools routine genotyping |
title_fullStr | When the genome bluffs: a tandem duplication event during generation of a novel Agmo knockout mouse model fools routine genotyping |
title_full_unstemmed | When the genome bluffs: a tandem duplication event during generation of a novel Agmo knockout mouse model fools routine genotyping |
title_short | When the genome bluffs: a tandem duplication event during generation of a novel Agmo knockout mouse model fools routine genotyping |
title_sort | when the genome bluffs a tandem duplication event during generation of a novel agmo knockout mouse model fools routine genotyping |
work_keys_str_mv | AT sailers whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT coassins whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT lacknerk whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT fischerc whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT mcneille whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT streiterg whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT kremserc whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT maglionem whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT greencm whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT morallid whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT moschenar whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT kellerma whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT goldererg whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT wernerfelmayerg whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT tegederi whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT channonkm whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT daviesb whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT wernerer whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping AT watschingerk whenthegenomebluffsatandemduplicationeventduringgenerationofanovelagmoknockoutmousemodelfoolsroutinegenotyping |