Deep convolutional neural networks for efficient pose estimation in gesture videos
Our objective is to efficiently and accurately estimate the upper body pose of humans in gesture videos. To this end, we build on the recent successful applications of deep convolutional neural networks (ConvNets). Our novelties are: (i) our method is the first to our knowledge to use ConvNets for e...
Päätekijät: | Pfister, T, Simonyan, K, Charles, J, Zisserman, A |
---|---|
Aineistotyyppi: | Conference item |
Kieli: | English |
Julkaistu: |
Springer
2015
|
Samankaltaisia teoksia
-
Automatic and efficient human pose estimation for sign language videos
Tekijä: Charles, J, et al.
Julkaistu: (2013) -
Flowing ConvNets for human pose estimation in videos
Tekijä: Pfister, T, et al.
Julkaistu: (2016) -
Personalizing human video pose estimation
Tekijä: Charles, J, et al.
Julkaistu: (2016) -
Two-stream convolutional networks for action recognition in videos
Tekijä: Simonyan, K, et al.
Julkaistu: (2014) -
Age Estimation of Faces in Videos Using Head Pose Estimation and Convolutional Neural Networks
Tekijä: Beichen Zhang, et al.
Julkaistu: (2022-05-01)